63 research outputs found

    High-intensity ultrashort laser-induced ablation of stainless steel foil targets in the presence of ambient gas

    Get PDF
    Ablation depths of stainless steel targets irradiated by 80-fs laser pulses at a flux F ≤ 40 J/cm2 (intensity ≤ 5 × 1014 W/cm2) in the presence of air at atmospheric pressure are experimentally measured. These values are lower than the theoretical predictions for metal targets in vacuum. Results are analyzed on the basis of the role of the ambient gas and of crater formation on the behavior of the ablated material

    Beat-wave generation of plasmons in semiconductor plasmas

    Full text link
    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas.Comment: 11 pages, LaTex, no figures, no macro

    A summary of the beatwave experiments at Ecole Polytechnique

    Full text link
    We present a summary of the beatwave particle acceleration program developed at Ecole Polytechnique. In dedicated experiments, plasma formation, plasma wave generation and saturation, and particle acceleration were successively studied and understood in detail. A maximum energy gain of 1.3 MeV was obtained, which is compatible with an accelerating gradient of 0.7 GV/m.Comment: 3 pages, 4 figure

    Experimental Study of electron acceleration by plasma beat-waves with Nd lasers

    Get PDF
    International audienceWe have observed the acceleration of electrons by a beat-wave generated in a deuterium plasma by two Nd-YAG and Nd-YLF laser wavelengths. Electrons injected at an energy of 3.3 MeV are observed to be accelerated up to 4.7 MeV after the plasma. The energy gain is compatible with a peak electric field of the order of 1.2 GV/m. The experiment has been performed with different injection energies, from 2.5 to 3.3 MeV, with different plasma dimensions, and with different laser intensitie

    Accelerator and new accelerating schemes

    No full text
    No abstract availabl
    corecore