18 research outputs found

    Tidal flow separation at protruding beach nourishments

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1002/2016JC011942In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal eddies of length scales larger than the nourishment itself. The present study examines the characteristics of the tidal flow field around protruding beach nourishments under varying nourishment geometry and tidal conditions, based on extensive field observations and numerical flow simulations. Observations of the flow field around the Sand Motor, obtained with a ship-mounted current profiler and a set of fixed current profilers, show that a tidal eddy develops along the northern edge of the mega-nourishment every flood period. The eddy is generated around peak tidal flow and gradually gains size and strength, growing much larger than the cross-shore dimension of the coastline perturbation. Based on a 3 week measurement period, it is shown that the intensity of the eddy modulates with the spring-neap tidal cycle. Depth-averaged tidal currents around coastline perturbations are simulated and compared to the field observations. The occurrence and behavior of tidal eddies is derived for a large set of simulations with varying nourishment size and shape. Results show that several different types of behavior exist, characterized by different combinations of the nourishment aspect ratio, the size of the nourishment relative to the tidal excursion length, and the influence of bed friction.STW grantERC-Advanced GrantSTW Grant no. 12686: Nature-driven nourishments of coastal systems (NatureCoast), S1: Coastal SafetyERC-Advanced Grant no. 291206 - Nearshore Monitoring and Modeling (NEMO

    Morphodynamic Acceleration Techniques for Multi-Timescale Predictions of Complex Sandy Interventions

    No full text
    Thirty one percent (31%) of the world’s coastline consists of sandy beaches and dunes that form a natural defense protecting the hinterland from flooding. A common measure to mitigate erosion along sandy beaches is the implementation of sand nourishments. The design and acceptance of such a mitigating measure require information on the expected evolution at time scales from storms to decades. Process-based morphodynamic models are increasingly applied, together with morphodynamic acceleration techniques, to obtain detailed information on this wide scale of ranges. This study shows that techniques for the acceleration of the morphological evolution can have a significant impact on the simulated evolution and dispersion of sandy interventions. A calibrated Delft3D model of the Sand Engine mega-nourishment is applied to compare different acceleration techniques, focusing on accuracy and computational times. Results show that acceleration techniques using representative (schematized) wave conditions are not capable of accurately reproducing the morphological response in the first two years. The best reproduction of the morphological behavior of the first five years is obtained by the brute force simulations. Applying input filtering and a compression factor provides similar accuracy yet with a factor five gain in computational cost. An attractive method for the medium to long time scales, which further reduces computational costs, is a method that uses representative wave conditions based on gross longshore transports, while showing similar results as the benchmark simulation. Erosional behavior is captured well in all considered techniques with variations in volumes of about 1 million m 3 after three decades. The spatio-temporal variability of the predicted alongshore and cross-shore distribution of the morphological evolution however have a strong dependency on the selected acceleration technique. A new technique, called ’brute force merged’, which incorporates the full variability of the wave climate, provides the optimal combination of phenomenological accuracy and computational efficiency (a factor of 20 faster than the benchmark brute force technique) at both the short and medium to long time scales. This approach, which combines realistic time series and the mormerge technique, provides an attractive and flexible method to efficiently predict the evolution of complex sandy interventions at time scales from hours to decades

    Morphodynamic Acceleration Techniques for Multi-Timescale Predictions of Complex Sandy Interventions

    No full text
    Thirty one percent (31%) of the world's coastline consists of sandy beaches and dunes that form a natural defense protecting the hinterland from flooding. A common measure to mitigate erosion along sandy beaches is the implementation of sand nourishments. The design and acceptance of such a mitigating measure require information on the expected evolution at time scales from storms to decades. Process-based morphodynamic models are increasingly applied, together with morphodynamic acceleration techniques, to obtain detailed information on this wide scale of ranges. This study shows that techniques for the acceleration of the morphological evolution can have a significant impact on the simulated evolution and dispersion of sandy interventions. A calibrated Delft3D model of the Sand Engine mega-nourishment is applied to compare different acceleration techniques, focusing on accuracy and computational times. Results show that acceleration techniques using representative (schematized) wave conditions are not capable of accurately reproducing the morphological response in the first two years. The best reproduction of the morphological behavior of the first five years is obtained by the brute force simulations. Applying input filtering and a compression factor provides similar accuracy yet with a factor five gain in computational cost. An attractive method for the medium to long time scales, which further reduces computational costs, is a method that uses representative wave conditions based on gross longshore transports, while showing similar results as the benchmark simulation. Erosional behavior is captured well in all considered techniques with variations in volumes of about 1 million m 3 after three decades. The spatio-temporal variability of the predicted alongshore and cross-shore distribution of the morphological evolution however have a strong dependency on the selected acceleration technique. A new technique, called 'brute force merged', which incorporates the full variability of the wave climate, provides the optimal combination of phenomenological accuracy and computational efficiency (a factor of 20 faster than the benchmark brute force technique) at both the short and medium to long time scales. This approach, which combines realistic time series and the mormerge technique, provides an attractive and flexible method to efficiently predict the evolution of complex sandy interventions at time scales from hours to decades

    Aeolian sediment transport on a beach with a varying sediment supply

    No full text
    Variability in aeolian sediment transport rates have traditionally been explain by variability in wind speed. Although it is recognised in literature that limitations in sediment supply can influence sediment transport significantly, most models that predict aeolian sediment transport attribute a dominant role to the magnitude of the wind speed. In this paper it is proposed that spatio-temporal variability of aeolian sediment transport on beaches can be dominated by variations in sediment supply rather than variations in wind speed.A new dataset containing wind speed, direction and sediment transport is collected during a 3. day field campaign at Vlugtenburg beach, The Netherlands. During the measurement campaign, aeolian sediment transport varied in time with the tide while wind speed remained constant. During low tide, measured transport was significantly larger than during high tide. Measured spatial gradients in sediment transport at the lower and upper beaches during fairly constant wind conditions suggest that aeolian sediment transport on beaches may be partly governed by the spatial variability in sediment supply, with relatively large supply in the intertidal zone when exposed and small supply on the upper beach due to sorting processes. The measurements support earlier findings that the intertidal zone can be significant source of sediment for sediment transport on beaches.Both a traditional cubic model (with respect to the wind speed) and a newly proposed linear model are fitted to the field data. The fit quality of both types of models are found to be similar

    Predicting marine and aeolian contributions to the Sand Engine's evolution using coupled modelling

    No full text
    Quantitative predictions of marine and aeolian sediment transport in the nearshore–beach–dune system are important for designing Nature-Based Solutions (NBS) in coastal environments. To quantify the impact of the marine-aeolian interactions on shaping NBS, we present a framework coupling three existing process-based models: Delft3D Flexible Mesh, SWAN and AeoLiS. This framework facilitates the continuous exchange of bed levels, water levels and wave properties between numerical models focussing on the aeolian and marine domain. The coupled model is used to simulate the morphodynamic evolution of the Sand Engine mega-nourishment. Results display good agreement with the observed aeolian and marine volumetric developments, showing similar marine-driven erosion from the main peninsula and aeolian-driven infilling of the dune lake. To estimate the magnitude of the interactions between aeolian and marine processes, a comparison between the simulated morphological development by the coupled and stand-alone models was made. This comparison shows that aeolian sediment transport to the foredune, i.e. 214,000 m3 over 5 years, extracts sediment from the marine domain. As a result, the alongshore redistribution of sediment from the main peninsula by marine-driven processes decreased by 70,000 m3, representing 1.7% of the total marine-driven dispersion. From the aeolian perspective, marine-driven deposition and erosion reshape the cross-shore profile, controlling the supply-limited aeolian sediment transport and the magnitude of sediment deposition in the foredunes. In the region with persistent accretion along the Sand Engine's southern flank, a higher than average foredune deposition was predicted due to morphological development of the region where sediment is picked up by aeolian transport. Including these marine processes in the coupled model resulted in an increase of 1.3% in foredune growth in year 1 and up to 6.7% in year 5 along this accretive section. At the northern flank, where the developing lagoon and tidal channel provided increased shelter to the supratidal beach, predicted foredune deposition reduced up to −11.5% over the evaluation period. Our findings show that both aeolian and marine transports impact reshaping the nourished sand, where developments in one domain affect the other. The study findings echo that the interplay between aeolian- and marine-driven morphodynamics could play a relevant role when predicting sandy NBS.</p

    North Sea Infragravity Wave Observations

    No full text
    Coastal safety assessments with wave-resolving storm impact models require a proper offshore description for the incoming infragravity (IG) waves. This boundary condition is generally obtained by assuming a local equilibrium between the directionally-spread incident sea-swell wave forcing and the bound IG waves. The contribution of the free incident IG waves is thus ignored. Here, in-situ observations of IG waves with wave periods between 100 s and 200 s at three measurement stations in the North Sea in water depths of O(30) m are analyzed to explore the potential contribution of the free and bound IG waves to the total IG wave height for the period from 2010 to 2018. The bound IG wave height is computed with the equilibrium theory of Hasselmann using the measured frequency-directional sea-swell spectra as input. The largest IG waves are observed in the open sea with a maximum significant IG wave height of O(0.3) m at 32 m water depth during storm Xaver (December 2013) with a concurrent significant sea-swell wave height in excess of 9 m. Along the northern part of the Dutch coast, this maximum has reduced to O(0.2) m at a water depth of 28 m with a significant sea-swell wave height of 7 m and to O(0.1) m at the most southern location at a water depth of 34 m with a significant sea-swell wave height of 5 m. These appreciable IG wave heights in O(30) m water depth represent a lower bound for the expected maximum IG wave heights given the fact that in the present analysis only a fraction of the full IG frequency range is considered. Comparisons with the predicted bound IG waves show that these can contribute substantially to the observed total IG wave height during storm conditions. The ratio between the predicted bound- and observed total IG variance ranges from 10% to 100% depending on the location of the observations and the timing during the storm. The ratio is typically high at the peak of the storm and is lower at both the onset and waning of the storm. There is significant spatial variability in this ratio between the stations. It is shown that differences in the directional spreading can play a significant role in this. Furthermore, the observed variability along the Dutch coast, with a substantially decreased contribution of the bound IG waves in the south compared to the northern part of the Dutch coast, are shown to be partly related to changes in the mean sea-swell wave period. For the southern part of the Dutch coast this corresponds to an increased difference with the typically assumed equilibrium boundary condition although it is not clear how much of the free IG-energy is onshore directed barring more sophisticated observations and/or modeling

    Initial spreading of a mega feeder nourishment : Observations of the Sand Engine pilot project

    Get PDF
    Sand nourishments are a widely applied technique to increase beach width for recreation or coastal safety. As the size of these nourishments increases, new questions arise on the adaptation of the coastal system after such large unnatural shapes have been implemented. This paper presents the initial morphological evolution after implementation of a mega-nourishment project at the Dutch coast intended to feed the surrounding beaches. In total 21.5 million m3 dredged material was used for two shoreface nourishments and a large sandy peninsula. The Sand Engine peninsula, a highly concentrated nourishment of 17 million m3 of sand in the shape of a sandy hook and protruding 1 km from shore, was measured intensively on a monthly scale in the first 18 months after completion. We examine the rapid bathymetric evolution with concurrent offshore wave forcing to investigate the feeding behaviour of the nourishment to the adjacent coast. Our observations show a large shoreline retreat of O (150 m) along the outer perimeter of the peninsula, with locally up to 300 m retreat. The majority (72%) of the volumetric losses in sediment on the peninsula (1.8 million m3) were compensated by accretion on adjacent coastal sections and dunes, confirming the feeding property of the mega nourishment. Further analyses show that the morphological changes were most pronounced in the first 6 months while the planform curvature reduced and the surf zone slope flattened to pre-nourishment values. In the following 12 months the changes were more moderate. Overall, the feeding property was strongly correlated to incident wave forcing, such that months with high incoming waves resulted in more alongshore spreading. Months with small wave heights resulted in minimal change in sediment distribution alongshore and mostly cross-shore movement of sediment

    A new alternative to saving our beaches from sea-level rise: The sand engine

    No full text
    A boldly innovative soft engineering intervention, comprising an unprecedented 21.5 Mm3 sand nourishment known as the Sand Engine, has recently been implemented in the Netherlands. The Sand Engine nourishment is a pilot project to test the efficacy of lo

    ICON.NL: coastline observatory to examine coastal dynamics in response to natural forcing and human interventions

    No full text
    In the light of challenges raised by a changing climate and increasing population pressure in coastal regions, it has become clear that theoretical models and scattered experiments do not provide the data we urgently need to understand coastal conditions and processes. We propose a Dutch coastline observatory named ICON.NL, based at the Delfland Coast with core observations focused on the internationally well-known Sand Engine experiment, as part of an International Coastline Observatories Network (ICON). ICON.NL will cover the physics and ecology from deep water to the dunes. Data will be collected continuously by novel remote sensing and in-situ sensors, coupled to numerical models to yield unsurpassed long-term coastline measurements. The combination of the unique site and ambitious monitoring design enables new avenues in coastal science and a leap in interdisciplinary research
    corecore