57 research outputs found

    Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and stocks in the Upper Danube

    Get PDF
    AbstractPatterns of changes in the concentration of total and soluble reactive phosphorus (TP, SRP) and suspended sediments at different flow levels from 1991 to 2013 in the Austrian Danube are statistically analyzed and related to point and diffuse emissions, as well as to extreme hydrological events. Annual loads are calculated with three methods and their development in time is examined taking into consideration total emissions and hydrological conditions. The reduction of point discharges achieved during the 1990s was well translated into decreasing TP and SRP baseflow concentrations during the same period, but it did not induce any change in the concentrations at higher flow levels nor in the annual transport of TP loads. A sharp and long-lasting decline in TP concentration, affecting all flow levels, took place after a major flood in 2002. It was still visible during another major flood in 2013, which recorded lower TP concentrations than its predecessor. Such decline could not be linked to changes in point or diffuse emissions. This suggests that, as a result of the flood, the river system experienced a significant depletion of its in-stream phosphorus stock and a reduced mobilization of TP rich sediments afterwards. This hypothesis is corroborated by the decoupling of peak phosphorus loads from peak maximum discharges after 2002. These results are highly relevant for the design of monitoring schemes and for the correct interpretation of water quality data in terms of assessing the performance of environmental management measures

    The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment

    Get PDF
    AbstractOur study examines the source aquifers and stream inputs of the seasonal water and nitrogen dynamics of a headwater agricultural catchment to determine the dominant driving forces for the seasonal dynamics in the surface water nitrogen loads and concentrations. We found that the alternating aquifer contributions throughout the year of the deep and shallow aquifers were the main cause for the seasonality of the nitrate concentration. The deep aquifer water typically contributed 75% of the total outlet discharge in the summer and 50% in the winter when the shallow aquifer recharges due to low crop evapotranspiration. The shallow aquifer supplied the vast majority of the nitrogen load to the stream due to the significantly higher total nitrogen concentration (11mg-N/l) compared to the deep aquifer (0.50mg-N/l). The main stream input pathway for the shallow aquifer nitrogen load was from the perennial tile drainages providing 60% of the total load to the stream outlet, while only providing 26% of the total flow volume. The diffuse groundwater input to the stream was the largest input to the stream (39%), but only supplied 27% to the total nitrogen load as the diffuse water was mostly composed of deep aquifer water

    Alpine Areas as Source of Nutrient Emissions into Rivers

    Get PDF

    Uncertainty contributions to low-flow projections in Austria

    Get PDF
    The main objective of the paper is to understand the contributions to the uncertainty in low-flow projections resulting from hydrological model uncertainty and climate projection uncertainty. Model uncertainty is quantified by different parameterisations of a conceptual semi-distributed hydrologic model (TUWmodel) using 11 objective functions in three different decades (1976&ndash;1986, 1987&ndash;1997, 1998&ndash;2008), which allows for disentangling the effect of the objective function-related uncertainty and temporal stability of model parameters. Climate projection uncertainty is quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 and HADCM3-A1B) using a delta change approach. The approach is tested for 262 basins in Austria. <br><br> The results indicate that the seasonality of the low-flow regime is an important factor affecting the performance of model calibration in the reference period and the uncertainty of <i>Q</i><sub>95</sub> low-flow projections in the future period. In Austria, the range of simulated <i>Q</i><sub>95</sub> in the reference period is larger in basins with a summer low-flow regime than in basins with a winter low-flow regime. The accuracy of simulated <i>Q</i><sub>95</sub> may result in a range of up to 60 % depending on the decade used for calibration. <br><br> The low-flow projections of Q<sub>95</sub> show an increase of low flows in the Alps, typically in the range of 10–30 % and a decrease in the south-eastern part of Austria mostly in the range &minus;5 to &minus;20 % for the climate change projected for the future period 2021&ndash;2050, relative the reference period 1978&ndash;2007. The change in seasonality varies between scenarios, but there is a tendency for earlier low flows in the northern Alps and later low flows in eastern Austria. The total uncertainty of <i>Q</i><sub>95</sub> projections is the largest in basins with a winter low-flow regime and, in some basins the range of <i>Q</i><sub>95</sub> projections exceeds 60 %. In basins with summer low flows, the total uncertainty is mostly less than 20 %. The ANOVA assessment of the relative contribution of the three main variance components (i.e. climate scenario, decade used for model calibration and calibration variant representing different objective function) to the low-flow projection uncertainty shows that in basins with summer low flows climate scenarios contribute more than 75 % to the total projection uncertainty. In basins with a winter low-flow regime, the median contribution of climate scenario, decade and objective function is 29, 13 and 13 %, respectively. The implications of the uncertainties identified in this paper for water resource management are discussed

    Automated online monitoring of fecal pollution in water by enzymatic methods

    Get PDF
    RÉSUMÉ: To facilitate the prompt management of public health risks from water resources, the fluorescence-based detection of the enzymatic activity of β-d-glucuronidase (GLUC) has been suggested as a rapid method to monitor fecal pollution. New technological adaptations enable now its automated, near-real-time measurement in a robust and analytically precise manner. Large data sets of high temporal or spatial resolution have been reported from a variety of freshwater resources, demonstrating the great potential of this automated method. However, the fecal indication capacity of GLUC activity and the potential link to health risk is still unclear, presenting considerable limitations. This review provides a critical evaluation of automated, online GLUC-based methods (and alternatives) and defines open questions to be solved before the method can fully support water management

    Real-time monitoring of beta-d-glucuronidase activity in sediment laden streams: A comparison of prototypes

    Get PDF
    AbstractDetection of enzymatic activities has been proposed as a rapid surrogate for the culture-based microbiological pollution monitoring of water resources. This paper presents the results of tests on four fully automated prototype instruments for the on-site monitoring of beta-d-glucuronidase (GLUC) activity. The tests were performed on sediment-laden stream water in the Hydrological Open Air Laboratory (HOAL) during the period of March 2014 to March 2015. The dominant source of faecal pollution in the stream was swine manure applied to the fields within the catchment. The experiments indicated that instrument pairs with the same construction design yielded highly consistent results (R2 = 0.96 and R2 = 0.94), whereas the results between different designs were less consistent (R2 = 0.71). Correlations between the GLUC activity measured on-site and culture-based Escherichia coli analyses over the entire study period yielded R2 = 0.52 and R2 = 0.47 for the two designs, respectively. The correlations tended to be higher at the event scale. The GLUC activity was less correlated with suspended sediment concentrations than with E. coli, which is interpreted in terms of indicator applicability and the time since manure application. The study shows that this rapid assay can yield consistent results over a long period of on-site operation in technically challenging habitats. Although the use of GLUC activity as a proxy for culture-based assays could not be proven for the observed habitat, the study results suggest that this biochemical indicator has high potential for implementation in early warning systems

    Belastung des Neusiedler Sees mit anthropogenen Spurenstoffen: Ăśberlegungen zu Herkunft und Verhalten

    Get PDF
    In this paper, we first present the contamination of Lake Neusiedl with anthropogenic trace substances regulated at national or EU level. Second, we identify main emission pathways for selected substances into the River Wulka and Lake Neusiedl and identify the potential environmental behaviour of trace substances in the aquatic system. Even if a comprehensive monitoring of all regulated substances in the lake is at present still missing, we can assume the compliance with environmental quality standards for most of them based on measurements carried out in the River Wulka and from biota-monitoring in the lake. For some substances quality criteria are not or probably not met, for others a final diagnosis is currently not possible due to analytical constraints. Depending on the examined substance, effluents from waste water treatment plants, agricultural erosion or atmospheric deposition on the lake surface may be the dominant pathway of contamination into the River Wulka and Lake Neusiedl. Besides specific considerations for individual substances, taking into account the enormous number of anthropogenic trace substances that are released into the environment, Lake Neusiedl must be regarded as especially vulnerable to this kind of contamination. The high vulnerability mainly derives from the lake acting as a substance-sink. Persistent chemicals which enter the lake may concentrate in the water of the lake or may be stored in the sediments of the reed belt, from where they might be mobilized later on. Even if many of the highly persistent chemicals are removed from the lake water through degradation or conversion to metabolites, little is known about the end products of this conversion and they cannot be monitored completely because of their high number. As a basis for the development of strategies for a long-term and efficient management of the lake, a regular monitoring of trace substances in lake and reed belt should be reinforced considerably to detect any undesirable developments as early as possible.EU-Projekt ATHU53 REBEN5225361

    Occurrence and levels of micropollutants across environmental and engineered compartments in Austria

    Get PDF
    Occurrence and concentration of a broad spectrum of micropollutants are investigated in Austrian river catchments, namely polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organotin compounds, perfluoroalkyl acids (PFAAs) and metals. The parallel analysis across multiple environmental and engineered compartments sheds light on the ratio of dissolved and particulate transport and on differences in concentration levels between point and diffuse emission pathways. It is found that some PAHs and organotins are present in rivers, groundwater and bulk deposition at higher concentrations than in municipal wastewater effluents. Among PFAAs and metals, highest concentrations were recorded either in atmospheric deposition or in discharges from wastewater treatment plants. The relevance of the analysis across compartments is best shown by the case of perfluorooctanesulfonic acid (PFOS). Despite municipal wastewater effluents being the emission pathway with highest concentrations, this study reveals that not only rivers, but also atmospheric deposition and groundwater sometimes exceed the environmental quality standard for surface waters. Moreover, this work reveals partially counterintuitive patterns. In rivers with treated wastewater discharges, increasing levels of dissolved compounds were measured at rising flow conditions, whereas the opposite would be expected owing to the dilution effect. This might derive from the mobilisation from soil or suspended particulate matter or rather find its explanation in high concentrations in atmospheric deposition. These hypotheses require however being tested through targeted studies. Additional future research includes the analysis of how regional or catchment specific characteristics might alter the relative importance of different emission pathways, and the modelling of emission and river loads to assess their relative contribution to river pollution.Federal Ministry of Sustainability and Tourism (BMNT)6366531

    Spatial patterns of enzymatic activity in large water bodies: Ship-borne measurements of beta-D-glucuronidase activity as a rapid indicator of microbial water quality

    Get PDF
    This study used automated enzymatic activity measurements conducted from a mobile research vessel to detect the spatial variability of beta‑d‑glucuronidase (GLUC) activity in large freshwater bodies. The ship-borne observations provided the first high-resolution spatial data of GLUC activity in large water bodies as rapid indication of fecal pollution and were used to identify associations with hydrological conditions and land use. The utility of this novel approach for water quality screening was evaluated by surveys of the Columbia River, the Mississippi River and the Yahara Lakes, covering up to a 500 km river course and 50 km2 lake area. The ship-borne measurements of GLUC activity correlated with standard E. coli analyses (R2 = 0.71) and revealed the effects of (1) precipitation events and urban run-off on GLUC activity in surface waters, (2) localized point inlets of potential fecal pollution and (3) increasing GLUC signals along gradients of urbanization. We propose that this ship-borne water quality screening to be integrated into future water inventory programs as an initial or complementary tool (besides established fecal indicator parameters), due to its ability to provide near real-time spatial information on potential fecal contamination of large surface water resources and therefore being helpful to greatly reduce potential human health risks.Austrian Science Fund (FWF)Vienna University of TechnologyNorth Temperate Lakes–Long Term Ecological Researc
    • …
    corecore