2,210 research outputs found

    Colloid-colloid and colloid-wall interactions in driven suspensions

    Full text link
    We investigate the non-equilibrium fluid structure mediated forces between two colloids driven through a suspension of mutually non-interacting Brownian particles as well as between a colloid and a wall in stationary situations. We solve the Smoluchowski equation in bispherical coordinates as well as with a method of reflections, both in linear approximation for small velocities and numerically for intermediate velocities, and we compare the results to a superposition approximation considered previously. In particular we find an enhancement of the friction (compared to the friction on an isolated particle) for two colloids driven side by side as well as for a colloid traveling along a wall. The friction on tailgating colloids is reduced. Colloids traveling side by side experience a solute induced repulsion while tailgating colloids are attracted to each other.Comment: 8 Pages, 8 figure

    On effective superpotentials and Kutasov duality

    Full text link
    We derive the effective superpotential for an N=1 SU(N_c) gauge theory with one massless adjoint field and N_f massless fundamental flavors and cubic tree-level superpotential for the adjoint field. This is a generalization of the Affleck-Dine-Seiberg superpotential to gauge theories with one massless adjoint matter field. Using Kutasov's generalization of Seiberg duality, we then find the effective superpotential for a related theory with massive fundamental flavors.Comment: 21 pages, Late

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals K⊆VK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(log⁡k/log⁡log⁡k)O(\log k/\log \log k), where k=∣K∣k = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(log⁡k)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Getting just the Supersymmetric Standard Model at Intersecting Branes on the Z6-orientifold

    Full text link
    In this paper, globally N=1 supersymmetric configurations of intersecting D6-branes on the Z6-orientifold are discussed, involving also fractional branes. It turns out rather miraculously that one is led almost automatically to just ONE particular class of 5 stack models containing the SM gauge group, which all have the same chiral spectrum. The further discussion shows that these models can be understood as exactly the supersymmetric standard model without any exotic chiral symmetric/antisymmetric matter. The superpartner of the Higgs finds a natural explanation and the hypercharge remains massless. However, the non-chiral spectrum within the model class is very different and does not in all cases allow for a N=2 low energy field theoretical understanding of the necessary breaking U(1)xU(1)->U(1) along the Higgs branch, which is needed in order to get the standard Yukawa couplings. Also the left-right symmetric models belong to exactly one class of chiral spectra, where the two kinds of exotic chiral fields can have the interpretation of forming a composite Higgs. The aesthetical beauty of these models, involving only non-vanishing intersection numbers of an absolute value three, seems to be unescapable.Comment: 45 pages, 2 figures, v3:some signs corrected in erratum, conclusions unchange

    Loop-Effects in Pseudo-Supersymmetry

    Get PDF
    We analyze the transmission of supersymmetry breaking in brane-world models of pseudo-supersymmetry. In these models two branes preserve different halves of the bulk supersymmetry. Thus supersymmetry is broken although each sector of the model is supersymmetric when considered separately. The world-volume theory on one brane feels the breakdown of supersymmetry only through two-loop interactions involving a coupling to fields from the other brane. In a 5D toy model with bulk vectors, we compute the diagrams that contribute to scalar masses on one brane and find that the masses are proportional to the compactification scale up to logarithmic corrections, m^2 ~ (2 pi R)^{-2}(ln(2 pi R ms)-1.1), where ms is an ultraviolet cutoff. Thus, for large compactification radii, where this result is valid, the brane scalars acquire a positive mass squared. We also compute the three-loop diagrams relevant to the Casimir energy between the two branes and find E ~ (2 pi R)^{-4}((ln(2 pi R ms)-1.7)^2+0.2). For large radii, this yields a repulsive Casimir force.Comment: Latex, 30 pages, 6 figures, v2: minor corrections, comments on susy algebra and x^5 covariant derivative adde

    Trajectories of Health-Related Quality of Life and HbA1c Values of Children and Adolescents With Diabetes Mellitus Type 1 Over 6 Months: A Longitudinal Observational Study

    Get PDF
    Introduction: To achieve optimized blood glucose concentrations (assessed by HbA1c) and high health-related quality of life (HRQL), children and adolescents with diabetes mellitus type 1 (T1DM) must follow strict disease management strategies. This study aims to investigate HRQL of children and adolescents with T1DM and its association with HbA1c values over the course of 6 months. Methods: Patients aged 7-17 years (n = 203) with T1DM provided HRQL data on a monthly basis. HRQL was measured using the Kids-CAT, a computer-adaptive test (CAT) comprising five generic HRQL domains. HbA1c concentrations were assessed at baseline, at 3 and 6 months. We explored the trajectory of HRQL at the domain level using linear mixed effects models. Further, we investigated the association between HRQL and HbA1c concentrations over time using path analysis models. Results: Children and adolescents with T1DM reported high scores across all HRQL domains over time. However, those with an HbA1c concentrations of \u3e 9.0% reported significantly lower scores in physical well-being and parent relations compared with those with an HbA1c concentration of \u3c 7.5%. Path analysis models revealed a minimal temporal relationship between HbA1c and HRQL, with a small negative impact of HbA1c on physical well-being, psychological well-being and parent relations. Conclusion: Although observed HRQL of young patients with T1DM was comparable to age-related German-speaking reference population over the course of 6 months, those with an HbA1c concentration \u3e 9.0% reported lower scores in selected HRQL domains. Thus, special attention should be drawn to HRQL of children and adolescents with higher HbA1c concentrations. The minimal relationship between HbA1c and HRQL indicates that the two therapy goals, i.e., achievement and maintenance of glycemic targets and high HRQL, should be considered and evaluated independently in clinical routine. Trial Registration: DRKS00006326 (German Clinical Trial Register), date of registration: August 1st, 2014

    Light-Induced Mechanistic Divergence in Gold(I) Catalysis:Revisiting the Reactivity of Diazonium Salts

    Get PDF
    In a systematic study of the Au-catalyzed reaction of o-alkynylphenols with aryldiazonium salts, we find that essentially the same reaction conditions lead to a change in mechanism when a light source is applied. If the reaction is carried out at room temperature using a AuI catalyst, the diazonium salt undergoes electrophilic deauration of a vinyl AuI intermediate and provides access to substituted azobenzofurans. If the reaction mixture is irradiated with blue LED light, C−C bond formation due to N2-extrusion from the diazonium salt is realized selectively, using the same starting materials without the need for an additional photo(redox) catalyst under aerobic conditions. We report a series of experiments demonstrating that the same vinyl AuI intermediate is capable of producing the observed products under photolytic and thermal conditions. The finding that a vinyl AuI complex can directly, without the need for an additional photo(redox) catalyst, result in C−C bond formation under photolytic conditions is contrary to the proposed mechanistic pathways suggested in the literature till date and highlights that the role of oxidation state changes in photoredox catalysis involving Au is thus far only poorly understood and may hold surprises for the future. Computational results indicate that photochemical activation can occur directly from a donor–acceptor complex formed between the vinyl AuI intermediate and the diazonium salt

    Extracellular Vesicle Associated miRNAs Regulate Signaling Pathways Involved in COVID-19 Pneumonia and the Progression to Severe Acute Respiratory Corona Virus-2 Syndrome

    Get PDF
    Background: Extracellular vesicles (EVs) are mediators of cell-to-cell communication in inflammatory lung diseases. They function as carriers for miRNAs which regulate mRNA transcripts and signaling pathways after uptake into recipient cells. We investigated whether miRNAs associated with circulating EVs regulate immunologic processes in COVID-19. Methods: We prospectively studied 20 symptomatic patients with COVID-19 pneumonia, 20 mechanically ventilated patients with severe COVID-19 (severe acute respiratory corona virus-2 syndrome, ARDS) and 20 healthy controls. EVs were isolated by precipitation, total RNA was extracted, profiled by small RNA sequencing and evaluated by differential gene expression analysis (DGE). Differentially regulated miRNAs between groups were bioinformatically analyzed, mRNA target transcripts identified and signaling networks constructed, thereby comparing COVID-19 pneumonia to the healthy state and pneumonia to severe COVID-19 ARDS. Results: DGE revealed 43 significantly and differentially expressed miRNAs (25 downregulated) in COVID-19 pneumonia when compared to controls, and 20 miRNAs (15 downregulated) in COVID-19 ARDS patients in comparison to those with COVID-19 pneumonia. Network analysis for comparison of COVID-19 pneumonia to healthy controls showed upregulated miR-3168 (log2FC=2.28, padjusted<0.001), among others, targeting interleukin-6 (IL6) (25.1, 15.2 - 88.2 pg/ml in COVID-19 pneumonia) and OR52N2, an olfactory smell receptor in the nasal epithelium. In contrast, miR-3168 was significantly downregulated in COVID-19 ARDS (log2FC=-2.13, padjusted=0.003) and targeted interleukin-8 (CXCL8) in a completely activated network. Toll-like receptor 4 (TLR4) was inhibited in COVID-19 pneumonia by miR-146a-5p and upregulated in ARDS by let-7e-5p. Conclusion: EV-derived miRNAs might have important regulative functions in the pathophysiology of COVID-19: CXCL8 regulates neutrophil recruitment into the lung causing epithelial damage whereas activated TLR4, to which SARS-CoV-2 spike protein binds strongly, increases cell surface ACE2 expression and destroys type II alveolar cells that secrete pulmonary surfactants; both resulting in pulmonary-capillary leakage and ARDS. These miRNAs may serve as biomarkers or as possible therapeutic targets

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)⊗h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page

    Low-Energy Brane-World Effective Actions and Partial Supersymmetry Breaking

    Get PDF
    As part of a programme for the general study of the low-energy implications of supersymmetry breaking in brane-world scenarios, we study the nonlinear realization of supersymmetry which occurs when breaking N=2 to N=1 supergravity. We consider three explicit realizations of this supersymmetry breaking pattern, which correspond to breaking by one brane, by one antibrane or by two (or more) parallel branes. We derive the minimal field content, the effective action and supersymmetry transformation rules for the resulting N=1 theory perturbatively in powers of kappa = 1/M_{Planck}. We show that the way the massive gravitino and spin-1 fields assemble into N=1 multiplets implies the existence of direct brane-brane contact interactions at order O(kappa). This result is contrary to the O(kappa^2) predicted by the sequestering scenario but in agreement with recent work of Anisimov et al. Our low-energy approach is model independent and is a first step towards determining the low-energy implications of more realistic brane models which completely break all supersymmetries.Comment: Latex, 29 Page
    • 

    corecore