6 research outputs found

    A Finite Difference Representation of Neutrino Radiation Hydrodynamics in Spherically Symmetric General Relativistic Space-Time

    Full text link
    We present an implicit finite difference representation for general relativistic radiation hydrodynamics in spherical symmetry. Our code, Agile-Boltztran, solves the Boltzmann transport equation for the angular and spectral neutrino distribution functions in self-consistent simulations of stellar core collapse and postbounce evolution. It implements a dynamically adaptive grid in comoving coordinates. Most macroscopically interesting physical quantities are defined by expectation values of the distribution function. We optimize the finite differencing of the microscopic transport equation for a consistent evolution of important expectation values. We test our code in simulations launched from progenitor stars with 13 solar masses and 40 solar masses. ~0.5 s after core collapse and bounce, the protoneutron star in the latter case reaches its maximum mass and collapses further to form a black hole. When the hydrostatic gravitational contraction sets in, we find a transient increase in electron flavor neutrino luminosities due to a change in the accretion rate. The muon- and tauon-neutrino luminosities and rms energies, however, continue to rise because previously shock-heated material with a non-degenerate electron gas starts to replace the cool degenerate material at their production site. We demonstrate this by supplementing the concept of neutrinospheres with a more detailed statistical description of the origin of escaping neutrinos. We compare the evolution of the 13 solar mass progenitor star to simulations with the MGFLD approximation, based on a recently developed flux limiter. We find similar results in the postbounce phase and validate this MGFLD approach for the spherically symmetric case with standard input physics.Comment: reformatted to 63 pages, 24 figures, to be published in ApJ

    A simple parameterization of the consequences of deleptonization for simulations of stellar core collapse

    No full text
    A simple and computationally efficient parameterization of the deleptonization, the entropy changes, and the neutrino stress is presented for numerical simulations of stellar core collapse. The parameterization of the neutrino physics is based on a bounce profile of the electron fraction as it results from state-of-the-art collapse simulations with multigroup Boltzmann neutrino transport in spherical symmetry. Two additional parameters include an average neutrino escape energy and a neutrino trapping density. The parameterized simulations reproduce the consequences of the delicate neutrino thermalization-diffusion process during the collapse phase and provide a by far more realistic alternative to the adiabatic approximation, which has often been used in the investigation of the emission of gravitational waves, of multidimensional general relativistic effects, of the evolution of magnetic fields, or even of the nucleosynthesis in simulations of core collapse and bounce. For supernova codes that are specifically designed for the postbounce phase, the parameterization builds a convenient bridge between the point where the applicability of a stellar evolution code ends and the point where the postbounce evolution begins

    PUSHing core-collapse simulations to explosion

    No full text
    We report on the PUSH method for artificially triggering core-collapse supernova explosions of massive stars in spherical symmetry. The PUSH method increases the energy deposition in the gain region proportionally to the heavy flavor neutrino fluxes.We summarize the parameter dependence of the method and calibrate PUSH to reproduce SN 1987A observables. We identify a best-fit progenitor and set of parameters that fit the explosion properties of SN 1987A, assuming 0.1 M-circle dot of fallback. For the explored progenitor range of 18-21 M-circle dot, we find correlations between explosion properties and the compactness of the progenitor model

    Computer-Modeling of Stars

    No full text
    A human being experiences his immediate environment on the scale of meters, seconds and grams. These are also the natural scales of his actions. Thus, as soon as he starts to explore the laws of physics, he can easily move around masses at the scale of grams, objects on the scale of meters and perform experiments on the scale of seconds. On these scales, the experimentator has full control on the setup of an experiment and direct access to all degrees of freedom during the evolution of the experiment. This direct access is lost in experiments that explore the physics on scales that are many orders of magnitude smaller. The experimentator still has full control on the setup, for example, by putting a specific target into a properly designed accelerator beam. But the measurements are then limited to the far field, where only a superposition of the effects of the microscopic physics becomes detectable. The large number of degrees of freedom that may be present in the microscopic physics must be explored by clever variations of the experimental setup. Most astronomical observations are obviously also taken from the far field, because the distance to the observed source is so much larger than the length scale of the source. Hence, many degrees of freedom of the dynamics on the length scale of the source are only indirectly accessible for the observer. Moreover, it is not possible to efficiently manipulate and prepare matter outside the solar system in order to produce systematic variations in the setup as in terrestrial experiments

    Massive stars and their supernovae

    No full text
    Stars more massive than about 8-10 solar masses evolve differently from their lower-mass counterparts: nuclear energy liberation is possible at higher temperatures and densities, due to gravitational contraction caused by such high masses, until forming an iron core that ends this stellar evolution. The star collapses thereafter, as insufficient pressure support exists when energy release stops due to Fe/Ni possessing the highest nuclear binding per nucleon, and this implosion turns into either a supernova explosion or a compact black hole remnant object. Neutron stars are the likely compact-star remnants after supernova explosions for a certain stellar mass range. In this chapter, we discuss this late-phase evolution of massive stars and their core collapse, including the nuclear reactions and nucleosynthesis products. We also include in this discussion more exotic outcomes, such as magnetic jet supernovae, hypernovae, gamma-ray bursts and neutron star mergers. In all cases we emphasize the viewpoint with respect to the role of radioactivities
    corecore