10 research outputs found

    Ratchet effect for nanoparticle transport in hair follicles

    Get PDF
    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion

    A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    Get PDF
    PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles

    Proof of Concept: Real-Time Flux Density Monitoring System on External Tube Receivers for Optimized Solar Field Operation

    No full text
    An experimental tube receiver was constructed, built and brought to operation. This receiver served as a model to try out the so-called scan-method and the measurement of the flux density by reflection off the receiver. in real time during irradiation. A comparison with a flux map obtained by a radiometer-based method shows qualitatively similar results. It is concluded that the camera-method is applicable to tube receivers. Experiments at large-scale industrial receivers are planned

    Proof of Concept: Real-Time Flux Density Monitoring System on External Tube Receivers for Optimized Solar Field Operation

    No full text
    An experimental tube receiver was constructed, built and brought to operation. This receiver served as a model to try out the so-called scan-method and the measurement of the flux density by reflection off the receiver. in real time during irradiation. A comparison with a flux map obtained by a radiometer-based method shows qualitatively similar results. It is concluded that the camera-method is applicable to tube receivers. Experiments at large-scale industrial receivers are planned

    Interaction of dermatologically relevant nanoparticles with skin cells and skin

    Get PDF
    The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica) versus intended exposure through application of sunscreen (titanium dioxide) or antiseptics (silver). Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle–skin interactions and the biological relevance of our findings from different angles

    PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    Get PDF
    PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles

    Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo

    No full text
    BACKGROUND: The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas. METHODS: We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357. RESULTS: TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/−0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/−4.4% of dead cells (untreated control) versus 78.0+/−9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/−7.2%, p=0.0009 versus 12.3+/−6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/−12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/−13.2% versus 37.7+/−14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP. CONCLUSIONS: Our data suggest possible future intra-operative applications of TTP to reduce microscopic residual disease in pancreatic cancer resections. Further promising applications include other malignancies (central liver/lung tumours) as well as synergistic effects combining TTP with chemotherapies. Yet, adaptations of plasma sources as well as of the composition of effective components of TTP are required to optimize their synergistic apoptotic actions

    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model

    Get PDF
    OBJECTIVE:So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. METHODS:Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen's egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. RESULTS:For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg's blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. CONCLUSION:The longest plasma treatment time with the kINPen MED was 5-10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks
    corecore