225 research outputs found

    Towards Digital Twin-enabled DevOps for CPS providing Architecture-Based Service Adaptation & Verification at Runtime

    Full text link
    Industrial Product-Service Systems (IPSS) denote a service-oriented (SO) way of providing access to CPS capabilities. The design of such systems bears high risk due to uncertainty in requirements related to service function and behavior, operation environments, and evolving customer needs. Such risks and uncertainties are well known in the IT sector, where DevOps principles ensure continuous system improvement through reliable and frequent delivery processes. A modular and SO system architecture complements these processes to facilitate IT system adaptation and evolution. This work proposes a method to use and extend the Digital Twins (DTs) of IPSS assets for enabling the continuous optimization of CPS service delivery and the latter's adaptation to changing needs and environments. This reduces uncertainty during design and operations by assuring IPSS integrity and availability, especially for design and service adaptations at CPS runtime. The method builds on transferring IT DevOps principles to DT-enabled CPS IPSS. The chosen design approach integrates, reuses, and aligns the DT processing and communication resources with DevOps requirements derived from literature. We use these requirements to propose a DT-enabled self-adaptive CPS model, which guides the realization of DT-enabled DevOps in CPS IPSS. We further propose detailed design models for operation-critical DTs that integrate CPS closed-loop control and architecture-based CPS adaptation. This integrated approach enables the implementation of A/B testing as a use case and central concept to enable CPS IPSS service adaptation and reconfiguration. The self-adaptive CPS model and DT design concept have been validated in an evaluation environment for operation-critical CPS IPSS. The demonstrator achieved sub-millisecond cycle times during service A/B testing at runtime without causing CPS operation interferences and downtime.Comment: Final published version appearing in 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2022

    Peer review analysis in the field of radiation oncology: results from a web-based survey of the Young DEGRO working group

    Get PDF
    PURPOSE To evaluate the reviewing behaviour in the German-speaking countries in order to provide recommendations to increase the attractiveness of reviewing activity in the field of radiation oncology. METHODS In November 2019, a survey was conducted by the Young DEGRO working group (jDEGRO) using the online platform “eSurveyCreator”. The questionnaire consisted of 29 items examining a~broad range of factors that influence reviewing motivation and performance. RESULTS A total of 281 responses were received. Of these, 154 (55%) were completed and included in the evaluation. The most important factors for journal selection criteria and peer review performance in the field of radiation oncology are the scientific background of the manuscript (85%), reputation of the journal (59%) and a~high impact factor (IF; 40%). Reasons for declining an invitation to review include the scientific background of the article (60%), assumed effort (55%) and a low IF (27%). A~double-blind review process is preferred by 70% of respondents to a single-blind (16%) or an open review process (14%). If compensation was offered, 59% of participants would review articles more often. Only 12% of the participants have received compensation for their reviewing activities so far. As compensation for the effort of reviewing, 55% of the respondents would prefer free access to the journal's articles, 45% a discount for their own manuscripts, 40% reduced congress fees and 39% compensation for expenses. CONCLUSION The scientific content of the manuscript, reputation of the journal and a~high IF determine the attractiveness for peer reviewing in the field of radiation oncology. The majority of participants prefer a~double-blind peer review process and would conduct more reviews if compensation was available. Free access to journal articles, discounts for publication costs or congress fees, or an expense allowance were identified to increase attractiveness of the review process

    Feasibility of azacitidine added to standard chemotherapy in older patients with acute myeloid leukemia - a randomised SAL pilot study

    Get PDF
    INTRODUCTION: Older patients with acute myeloid leukemia (AML) experience short survival despite intensive chemotherapy. Azacitidine has promising activity in patients with low proliferating AML. The aim of this dose-finding part of this trial was to evaluate feasibility and safety of azacitidine combined with a cytarabine- and daunorubicin-based chemotherapy in older patients with AML. TRIAL DESIGN: Prospective, randomised, open, phase II trial with parallel group design and fixed sample size. PATIENTS AND METHODS: Patients aged 61 years or older, with untreated acute myeloid leukemia with a leukocyte count of <20,000/µl at the time of study entry and adequate organ function were eligible. Patients were randomised to receive azacitidine either 37.5 (dose level 1) or 75 mg/sqm (dose level 2) for five days before each cycle of induction (7+3 cytarabine plus daunorubicine) and consolidation (intermediate-dose cytarabine) therapy. Dose-limiting toxicity was the primary endpoint. RESULTS: Six patients each were randomised into each dose level and evaluable for analysis. No dose-limiting toxicity occurred in either dose level. Nine serious adverse events occurred in five patients (three in the 37.5 mg, two in the 75 mg arm) with two fatal outcomes. Two patients at the 37.5 mg/sqm dose level and four patients at the 75 mg/sqm level achieved a complete remission after induction therapy. Median overall survival was 266 days and median event-free survival 215 days after a median follow up of 616 days. CONCLUSIONS: The combination of azacitidine 75 mg/sqm with standard induction therapy is feasible in older patients with AML and was selected as an investigational arm in the randomised controlled part of this phase-II study, which is currently halted due to an increased cardiac toxicity observed in the experimental arm

    Surfactant Protein D modulates allergen particle uptake and inflammatory response in a human epithelial airway model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated.</p> <p>Methods</p> <p>SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4<sup>+ </sup>T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array.</p> <p>Results</p> <p>SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines.</p> <p>Conclusion</p> <p>These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.</p

    Acute Toxicity and Early Oncological Outcomes After Intraoperative Electron Radiotherapy (IOERT) as Boost Followed by Whole Breast Irradiation in 157 Early Stage Breast Cancer Patients—First Clinical Results From a Single Center

    Get PDF
    Introduction: Breast conserving surgery (BCS) followed by postoperative whole breast irradiation (WBI) is the current standard of care for early stage breast cancer patients. Boost to the tumor bed is recommended for patients with a higher risk of local recurrence and may be applied with different techniques. Intraoperative electron radiotherapy (IOERT) offers several advantages compared to other techniques, like direct visualization of the tumor bed, better skin sparing, less inter- and intrafractional motion, but also radiobiological effects may be beneficial. Objective of this retrospective analysis of IOERT as boost in breast cancer patients was to assess acute toxicity and early oncological outcomes.Material and Methods: All patients, who have been irradiated between 11/2014 and 01/2018 with IOERT during BCS were analyzed. IOERT was applied using the mobile linear accelerator Mobetron with a total dose of 10 Gy, prescribed to the 90% isodose. After ensured woundhealing, WBI followed with normofractionated or hypofractionated regimens. Patient reports, including diagnostic examinations and toxicity were analyzed after surgery and 6–8 weeks after WBI. Overall survival, distant progression-free survival, in-breast and contralateral breast local progression-free survival were calculated using the Kaplan-Meier method. Furthermore, recurrence patterns were assessed.Results: In total, 157 patients with a median age of 57 years were evaluated. Postoperative adverse events were mild with seroma and hematoma grade 1–2 in 26% and grade 3 in 0.6% of the patients. Wound infections grade 2–3 occurred in 2.2% and wound dehiscence grade 1–2 in 1.9% of the patients. Six to eight weeks after WBI radiotherapy-dependent acute dermatitis grade 1–2 was most common in 90.9% of the patients. Only 4.6% of the patients suffered from dermatitis grade 3. No grade 4 toxicities were documented after surgery or WBI. 2- and 3-year overall survival and distant progression-free survival, were 97.5 and 93.6, and 0.7 and 2.8%, respectively. In-breast recurrence and contralateral breast cancer rates after 3 years were 1.9 and 2.8%, respectively.Conclusion: IOERT boost during BCS is a safe treatment option with low acute toxicity. Short-term recurrence rates are comparable to previously published data and emphasize, that IOERT as boost is an effective treatment

    Technical Note: A mobile sea-going mesocosm system - new opportunities for ocean change research

    Get PDF
    One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between single species laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile, sea-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (~50–75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine air–sea gas exchange, and (v) perform mass balance calculations. After multiple test runs in the Baltic Sea, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78° 56.2′ N, 11° 53.6′ E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton community and its impacts on biogeochemical cycling and air/sea exchange of climate relevant gases. This manuscript describes the mesocosm hardware, its deployment and handling, CO2 manipulation, sampling and cleaning, including some further modifications conducted based on the experiences gained during this study

    Intrafractional dose variation and beam configuration in carbon ion radiotherapy for esophageal cancer

    Get PDF
    Background: In carbon ion radiotherapy (CIR) for esophageal cancer, organ and target motion is a major challenge for treatment planning due to potential range deviations. This study intends to analyze the impact of intrafractional variations on dosimetric parameters and to identify favourable settings for robust treatment plans. Methods: We contoured esophageal boost volumes in different organ localizations for four patients and calculated CIR-plans with 13 different beam geometries on a free-breathing CT. Forward calculation of these plans was performed on 4D-CT datasets representing seven different phases of the breathing cycle. Plan quality was assessed for each patient and beam configuration. Results: Target volume coverage was adequate for all settings in the baseline CIR-plans (V95 > 98% for two-beam geometries, > 94% for one-beam geometries), but reduced on 4D-CT plans (V95 range 50–95%). Sparing of the organs at risk (OAR) was adequate, but range deviations during the breathing cycle partly caused critical, maximum doses to spinal cord up to 3.5x higher than expected. There was at least one beam configuration for each patient with appropriate plan quality. Conclusions: Despite intrafractional motion, CIR for esophageal cancer is possible with robust treatment plans when an individually optimized beam setup is selected depending on tumor size and localization
    corecore