1,409 research outputs found

    Quantitative analysis of pixel crosstalk in AMOLED displays

    Get PDF
    The resolution of organic light-emitting diode (OLED) displays is increasing steadily as these displays are adopted for mobile and virtual reality (VR) devices. This leads to a stronger pixel crosstalk effect, where the neighbors of active pixels unintentionally emit light due to a lateral electric current between the pixels. Recently, the crosstalk was quantified by measuring the current flowing through the common hole transport layer between the neighboring pixels and comparing it to the current through the active pixel diode. The measurements showed that the crosstalk is more crucial for low light levels. In such cases, the intended and parasitic currents are similar. The simulations performed in this study validated these measurement results. By simulations, we quantify the crosstalk current through the diode. The luminous intensity can be calculated with the measured current efficiency of the diodes. For low light levels, the unintended luminance can reach up to 40% of the intended luminance. The luminance due to pixel crosstalk is perceivable by humans. This effect should be considered for OLED displays with resolutions higher than 300 PPI

    Die Mantuaner Sinfonia: Studien zu den Sinfonien Salamone Rossis, Giovanni Battista Buonamentes und Marco Uccellinis

    Get PDF
    Abstract zur Dissertation „Die Mantuaner Sinfonia. Studien zu den Sinfonien Salamone Rossis, Giovanni Battista Buonamentes und Marco Uccellinis“ von Matthias Kirsch Die Arbeit untersucht eine Sondertradition kurzer instrumentaler Einleitungssätze des italienischen seicento, die durchweg als gedrucktes Repertoire überliefert sind. Dabei handelt es sich um gut 150 Kompositionen Salamone Rossis, Giovanni Battista Buonamentes und Marco Uccellinis. Die Methode der Studie ist analytisch-strukturell: Zentraler Gegenstand der Untersuchungen sind deshalb die Ausdifferenzierung besonderer Verlaufsarten und deren historische Einordnung vor dem allgemeinen Hintergrund zeitgenössischer Kompositionsweisen. Zugleich werden Gattungsfragen und Konzepte der einschlägigen wissenschaftlichen Literatur (stil moderno, durezze und Instrumentale Monodie) diskutiert. Ebenso wird der Frage nach zeitnahen Rezeptionszeugnissen nachgegangen. Eine Darstellung der jeweiligen Klangtechnik in den drei Teilrepertoires rundet die Untersuchung musiktheoretisch ab

    The PAX Toolkit and its Applications at Tevatron and LHC

    Full text link
    At the CHEP03 conference we launched the Physics Analysis eXpert (PAX), a C++ toolkit released for the use in advanced high energy physics (HEP) analyses. This toolkit allows to define a level of abstraction beyond detector reconstruction by providing a general, persistent container model for HEP events. Physics objects such as particles, vertices and collisions can easily be stored, accessed and manipulated. Bookkeeping of relations between these objects (like decay trees, vertex and collision separation, etc.) including deep copies is fully provided by the relation management. Event container and associated objects represent a uniform interface for algorithms and facilitate the parallel development and evaluation of different physics interpretations of individual events. So-called analysis factories, which actively identify and distinguish different physics processes and study systematic uncertainties, can easily be realized with the PAX toolkit. PAX is officially released to experiments at Tevatron and LHC. Being explored by a growing user community, it is applied in a number of complex physics analyses, two of which are presented here. We report the successful application in studies of t-tbar production at the Tevatron and Higgs searches in the channel t-tbar-Higgs at the LHC and give a short outlook on further developments

    Paraplegia as a symptom of failure after endovascular therapy of type B aortic dissection in Marfan syndrome

    Get PDF
    This report describes successful treatment of an unusual case of concomitant paraplegia and type 1 endoleak during the early postoperative course of endovascular therapy of type B dissection in a patient with Marfan syndrome

    Manufacturing of new roughness standards for the linearity of the vertical axis – Feasibility study and optimization

    Get PDF
    AbstractIn order to provide an alternative for the vertical axis calibration of stylus instruments which is usually performed based on step height standards, a new measurement standard geometry for the calibration of the linearity and research on its manufacturing is needed. For the manufacturing of these geometric measurement standards there is, according to the type of the measurement standard, a broad range of manufacturing processes that can be applied. New measurement standards for the roughness calibration were developed at the University of Kaiserslautern and an ultra-precision turning process was chosen for its manufacturing. The paper presents a feasibility study of the chosen manufacturing process. The aim of the investigations is to present the development of the standard and the qualification of the ultra-precision turning process for the manufacturing of calibration standards. An examination was performed in order to characterize the influences of different process parameters on the quality of the manufactured roughness standard

    Quantification and Classification of Cortical Perfusion during Ischemic Strokes by Intraoperative Thermal Imaging

    Get PDF
    Thermal imaging is a non-invasive and marker-free approach for intraoperative measurements of small temperature variations. In this work, we demonstrate the abilities of active dynamic thermal imaging for analysis of tissue perfusion state in case of cerebral ischemia. For this purpose, a NaCl irrigation is applied to the exposed cortex during hemicraniectomy. The cortical temperature changes are measured by a thermal imaging system and the thermal signal is recognized by a novel machine learning framework. Subsequent tissue heating is then approximated by a double exponential function to estimate tissue temperature decay constants. These constants allow us to characterize tissue with respect to its dynamic thermal properties. Using a Gaussian mixture model we show the correlation of these estimated parameters with infarct demarcations of post-operative CT. This novel scheme yields a standardized representation of cortical thermodynamic properties and might guide further research regarding specific intraoperative diagnostics

    Analysis of dimensional accuracy for micro-milled areal material measures with kinematic simulation

    Get PDF
    The calibration of areal surface topography measuring instruments is of high relevance to estimate the measurement uncertainty and to guarantee the traceability of the measurement results. Calibration structures for optical measuring instruments must be sufficiently small to determine the limits of the instruments. Besides other methods, micro-milling is a suitable process for manufacturing areal material measures. For the manufacturing by micro-milling with ball end mills, the tool radius (effective cutter radius) is the corresponding limiting factor: if the tool radius is too large to penetrate the concave profile details without removing the surrounding material, deviations from the target geometry will occur. These deviations can be detected and excluded before experimental manufacturing with the aid of a kinematic simulation. In this study, a kinematic simulation model for the prediction of the dimensional accuracy of micro-milled areal material measures is developed and validated. Subsequently, a radius study is conducted to determine how the tool radius r of the tool influences the dimensional accuracy of an areal crossed sinusoidal (ACS) geometry according to ISO 25178-70 [1] with a defined amplitude d and period length p. The resulting theoretical surface texture parameters are evaluated and compared to the target values. It was shown that the surface texture parameters deviate from the nominal values depending on the effective cutter radius used. Based on the results of the study, it can be determined with which effective tool radius the measurands Sa and Sq of the material measures are best met. The ideal effective radius for the application considered is between 50 and 75 ÎĽm

    Kinematic simulation to investigate the influence of the cutting edge topography when ball end micro milling

    Get PDF
    During the ball end micro milling of material measures, the cutting edge topography is imaged on the machined workpiece. The influence of the chipping on the resulting surface quality is much more dominant than other kinematic effects. In this simulative study, a model is built that is able to predict the correlation between the cutting edge topography and the resulting workpiece topography. Thus, the mentioned correlation can be investigated without overlaying effects of material separation or measurement uncertainties, which are unavoidable in an experimental study. The model has been validated based on four artificial chippings
    • …
    corecore