70 research outputs found

    Clinical Trial Design and Development Work Group within the Quantitative Imaging Network

    Get PDF
    The Clinical Trial Design and Development Working Group within the Quantitative Imaging Network focuses on providing support for the development, validation, and harmonization of quantitative imaging (QI) methods and tools for use in cancer clinical trials. In the past 10 years, the Group has been working in several areas to identify challenges and opportunities in clinical trials involving QI and radiation oncology. The Group has been working with Quantitative Imaging Network members and the Quantitative Imaging Biomarkers Alliance leadership to develop guidelines for standardizing the reporting of quantitative imaging. As a validation platform, the Group led a multireader study to test a semi-automated positron emission tomography quantification software. Clinical translation of QI tools cannot be possible without a continuing dialogue with clinical users. This article also highlights the outreach activities extended to cooperative groups and other organizations that promote the use of QI tools to support clinical decisions

    Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer

    Get PDF
    Purpose Transforming growth factor-beta (TGF-β) signaling plays a key role in epithelial-mesenchymal transition (EMT) of tumors, including malignant glioma. Small molecule inhibitors (SMI) blocking TGF-β signaling reverse EMT and arrest tumor progression. Several SMIs were developed, but currently only LY2157299 monohydrate (galunisertib) was advanced to clinical investigation. Design The first-in-human dose study had three parts (Part A, dose escalation, n = 39; Part B, safety combination with lomustine, n = 26; Part C, relative bioavailability study, n = 14). Results A preclinical pharmacokinetic/pharmacodynamic (PK/PD) model predicted a therapeutic window up to 300 mg/day and was confirmed in Part A after continuous PK/PD. PK was not affected by co-medications such as enzyme-inducing anti-epileptic drugs or proton pump inhibitors. Changes in pSMAD2 levels in peripheral blood mononuclear cells were associated with exposure indicating target-related pharmacological activity of galunisertib. Twelve (12/79; 15 %) patients with refractory/relapsed malignant glioma had durable stable disease (SD) for 6 or more cycles, partial responses (PR), or complete responses (CR). These patients with clinical benefit had high plasma baseline levels of MDC/CCL22 and low protein expression of pSMAD2 in their tumors. Of the 5 patients with IDH1/2 mutation, 4 patients had a clinical benefit as defined by CR/PR and SD ≥6 cycles. Galunisertib had a favorable toxicity profile and no cardiac adverse events. Conclusion Based on the PK, PD, and biomarker evaluations, the intermittent administration of galunisertib at 300 mg/day is safe for future clinical investigation

    Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.

    Get PDF
    The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers\u27 tissue of origin

    Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas

    Get PDF
    Mutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas (<10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.American Cancer Society [RSG-10-126-01-CCE]American Cancer SocietyNCINCI [5R01-CA140316]Pediatric Brain Tumor Foundation Institute GrantPediatric Brain Tumor Foundation Institute GrantSoutheastern Brain Tumor Foundation GrantSoutheastern Brain Tumor Foundation GrantVoices Against Brain Cancer Foundation GrantVoices Against Brain Cancer Foundation GrantJames S. McDonnell Foundation GrantJames S. McDonnell Foundation GrantV FoundationV FoundationAccelerate Brain Cancer Cure Foundation GrantAccelerate Brain Cancer Cure Foundation GrantNIHNIH [5P50 NS20023, 5P50 CA108785, CA057345, CA129825, R37 011898]Sanofi-AventisSanofiAventi

    Controversies in the Adjuvant Therapy of High-Grade Gliomas

    No full text
    Controversies in the adjuvant therapy of newly diagnosed high-grade gliomas are analyzed and discussed
    • …
    corecore