4 research outputs found

    Vibrational absorption sidebands in the Coulomb blockade regime of single-molecule transistors

    Full text link
    Current-driven vibrational non-equilibrium induces vibrational sidebands in single-molecule transistors which arise from tunneling processes accompanied by absorption of vibrational quanta. Unlike conventional sidebands, these absorption sidebands occur in a regime where the current is nominally Coulomb blockaded. Here, we develop a detailed and analytical theory of absorption sidebands, including current-voltage characteristics as well as shot noise. We discuss the relation of our predictions to recent experiments.Comment: 7 pages, 6 figures; revised discussion of relation to experimen

    Relaxation mechanisms of the persistent spin helix

    Full text link
    We study the lifetime of the persistent spin helix in semiconductor quantum wells with equal Rashba- and linear Dresselhaus spin-orbit interactions. In order to address the temperature dependence of the relevant spin relaxation mechanisms we derive and solve semiclassical spin diffusion equations taking into account spin-dependent impurity scattering, cubic Dresselhaus spin-orbit interactions and the effect of electron-electron interactions. For the experimentally relevant regime we find that the lifetime of the persistent spin helix is mainly determined by the interplay of cubic Dresselhaus spin-orbit interaction and electron-electron interactions. We propose that even longer lifetimes can be achieved by generating a spatially damped spin profile instead of the persistent spin helix state.Comment: 12 pages, 2 figure

    Quantum corrections in the Boltzmann conductivity of graphene and their sensitivity to the choice of formalism

    Full text link
    Semiclassical spin-coherent kinetic equations can be derived from quantum theory with many different approaches (Liouville equation based approaches, nonequilibrium Green's functions techniques, etc.). The collision integrals turn out to be formally different, but coincide in textbook examples as well as for systems where the spin-orbit coupling is only a small part of the kinetic energy like in related studies on the spin Hall effect. In Dirac cone physics (graphene, surface states of topological insulators like Bi_{1-x}Sb_x, Bi_2Te_3 etc.), where this coupling constitutes the entire kinetic energy, the difference manifests itself in the precise value of the electron-hole coherence originated quantum correction to the Drude conductivity ∼e2/h∗ℓkF\sim e^2/h * \ell k_F. The leading correction is derived analytically for single and multilayer graphene with general scalar impurities. The often neglected principal value terms in the collision integral are important. Neglecting them yields a leading correction of order (ℓkF)−1(\ell k_F)^{-1}, whereas including them can give a correction of order (ℓkF)0(\ell k_F)^0. The latter opens up a counterintuitive scenario with finite electron-hole coherent effects at Fermi energies arbitrarily far above the neutrality point regime, for example in the form of a shift ∼e2/h\sim e^2/h that only depends on the dielectric constant. This residual conductivity, possibly related to the one observed in recent experiments, depends crucially on the approach and could offer a setting for experimentally singling out one of the candidates. Concerning the different formalisms we notice that the discrepancy between a density matrix approach and a Green's function approach is removed if the Generalized Kadanoff-Baym Ansatz in the latter is replaced by an anti-ordered version.Comment: 31 pages, 1 figure. An important sign error has been rectified in the principal value terms in equation (52) in the vN & NSO expression. It has no implications for the results on the leading quantum correction studied in this paper. However, for the higher quantum corrections studied in arXiv:1304.3929 (see comment in the latter) the implications are crucia

    Evolution of the persistent spin helix in the presence of Hartree-Fock fields

    Get PDF
    We derive a spin diffusion equation for a spin-orbit coupled two-dimensional electron gas including the Hartree-Fock field resulting from 1st order electron-electron interactions. We find that the lifetime of the persistent spin helix, which emerges for equal linear Rashba- and Dresselhaus spin-orbit interactions, can be enhanced considerably for large initial spin polarizations due to the Hartree-Fock field. The reason is a reduction of the symmetry-breaking cubic Dresselhaus scattering rate by the Hartree-Fock field. Also higher harmonics are generated and the polarization of the persistent spin helix rotates out of the (Sy,Sz)-plane acquiring a finite Sx-component. This effect becomes more pronounced, when the cubic Dresselhaus spin-orbit interaction is large.Comment: 9 pages, 3 figure
    corecore