90 research outputs found

    H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine

    Get PDF
    At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted

    BK virus-induced nephritis and cystitis after matched unrelated donor stem cell transplantation: A case report

    Get PDF
    Currently, there is no standard therapy for a BK virus infection of the urogenital tract in immunocompromised, stem cell transplanted patients, so that early diagnosis and introduction of supportive measures have the highest response rates to date. © 2020 The Authors. Clinical Case Reports published by John Wiley & Sons Ltd
    corecore