22,746 research outputs found
New Measurements of the Radio Photosphere of Mira based on Data from the JVLA and ALMA
We present new measurements of the millimeter wavelength continuum emission
from the long period variable Mira ( Ceti) at frequencies of 46 GHz, 96 GHz,
and 229 GHz (~7 mm, 3 mm, and 1 mm) based on observations obtained
with the Jansky Very Large Array (JVLA) and the Atacama Large
Millimeter/submillimeter Array (ALMA). The measured millimeter flux densities
are consistent with a radio photosphere model derived from previous
observations, where flux density, . The stellar disk
is resolved, and the measurements indicate a decrease in the size of the radio
photosphere at higher frequencies, as expected if the opacity decreases at
shorter wavelengths. The shape of the radio photosphere is found to be slightly
elongated, with a flattening of ~10-20%. The data also reveal evidence for
brightness non-uniformities on the surface of Mira at radio wavelengths. Mira's
hot companion, Mira B was detected at all three observed wavelengths, and we
measure a radius for its radio-emitting surface of
cm. The data presented here highlight the power of the JVLA and ALMA for the
study of the atmospheres of evolved stars.Comment: Accepted to ApJ; 27 pages, 7 figure
The bloodstream differentiation - division of Trypanosoma brucei studied using mitochondrial markers
In the bloodstream of its mammalian host, the African trypanosome Trypanosoma brucei undergoes a life cycle stage differentiation from a long, slender form to a short, stumpy form. This involves three known major events: exit from a proliferative cell cycle, morphological change and mitochondrial biogenesis. Previously, models have been proposed accounting for these events (Matthews & Gull 1994a). Refinement of, and discrimination between, these models has been hindered by a lack of stage-regulated antigens useful as markers at the single-cell level. We have now evaluated a variety of cytological markers and applied them to investigate the coordination of phenotypic differentiation and cell cycle arrest. Our studies have focused on the differential expression of the mitochondrial enzyme dihydrolipoamide dehydrogenase relative to the differentiation-division of bloodstream trypanosomes. The results implicate a temporal order of events: commitment, division, phenotypic differentiation
Orbits and origins of the young stars in the central parsec of the galaxy
We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas yr^(−1) (3 km s^(−1) ), which is ≳7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr^(−2) (7 km s^(−1) yr^(−1) ). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% (38 of 73) of the young stars, is inclined by ~115° from the plane of the sky, and is oriented at a position angle of ∼100° East of North. The on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as ∝ r^(−2). The disk has an out-of-the-disk velocity dispersion of 28±6 km s^(−1) , which corresponds to a half-opening angle of 7°±2° , and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple thin circular disk
A Luminous Companion to SGR 1806-20
We have obtained infrared spectra of the star suggested to be the counterpart
of the soft gamma-ray repeater (SGR) 1806-20. We found strong emission lines
similar to those seen in the spectra of the rare Luminous Blue Variables and
B[e] stars. A He I absorption line is also seen, from which we infer a spectral
type O9--B2. This classification, in combination with the minimum distance of
\simgt6 kpc inferred from its extinction, makes the star one of the most
luminous in the Galaxy. We infer that it is a companion to SGR 1806-20, and
suggest that the presence of a companion is somehow related to the SGR
phenomenon.Comment: 5 pages, AASTEX text+table and 2 PostScript figures (needs LaTeX
style files aaspptwo.sty, epsf.sty and rotate.sty). In case of problems,
contact [email protected]. Postscript file of complete article available
on request. (Replaced because first version had one wrong reference in it
Near Infrared Observations of a Redshift 4.92 Galaxy: Evidence for Significant Dust Absorption
Near-infrared imaging and spectroscopy have been obtained of the
gravitationally lensed galaxy at z=4.92 discovered in HST images by Franx et
al. (1997). Images at 1.2, 1.6 and 2.2 microns show the same arc morphology as
the HST images. The spectrum with resolution \lambda / \Delta\lambda ~ 70 shows
no emission lines with equivalent width stronger than 100 A in the rest frame
wavelength range 0.34 to 0.40 microns. In particular, [OII]3727 A and
[NeIII]3869 A are not seen. The energy distribution is quite blue, as expected
for a young stellar population with the observed Ly alpha flux. The spectral
energy distribution can be fit satisfactorily for such a young stellar
population when absorption by dust is included. The models imply a reddening
0.1 mag < E(B-V) < 0.4 mag. The stellar mass of the lensed galaxy lies in the
range of 2 to 16 x 10^9 Msun. This is significantly higher than estimates based
on the HST data alone. Our data imply that absorption by dust is important to
redshifts of ~5.Comment: LaTeX with ApJ journal format, 2 postscript figures, ApJL, accepte
Spectroscopic signatures related to a sunquake
© 2015. The American Astronomical Society. All rights reserved.. The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode's EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time-distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time-distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time-distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red, indicating the possible presence of a significant flux of downward propagating Alfvén waves
Multiprotein DNA looping
DNA looping plays a fundamental role in a wide variety of biological
processes, providing the backbone for long range interactions on DNA. Here we
develop the first model for DNA looping by an arbitrarily large number of
proteins and solve it analytically in the case of identical binding. We uncover
a switch-like transition between looped and unlooped phases and identify the
key parameters that control this transition. Our results establish the basis
for the quantitative understanding of fundamental cellular processes like DNA
recombination, gene silencing, and telomere maintenance.Comment: 11 pages, 4 figure
A Constant Spectral Index for Sagittarius A* During Infrared/X-ray Intensity Variations
We report the first time-series of broadband infrared (IR) color measurements
of Sgr A*, the variable emission source associated with the supermassive black
hole at the Galactic Center. Using the laser and natural guide star AO systems
on the Keck II telescope, we imaged Sgr A* in multiple near-infrared broadband
filters with a typical cycle time of ~3 min during 4 observing runs
(2005-2006), two of which were simultaneous with Chandra X-ray measurements. In
spite of the large range of dereddened flux densities for Sgr A* (2-30 mJy),
all of our near-IR measurements are consistent with a constant spectral index
of alpha = -0.6+-0.2. Furthermore, this value is consistent with the spectral
indices observed at X-ray wavelengths during nearly all outbursts; which is
consistent with the synchrotron self-Compton model for the production of the
X-ray emission. During the coordinated observations, one IR outburst occurs <36
min after a possibly associated X-ray outburst, while several similar IR
outbursts show no elevated X-ray emission. A variable X-ray to IR ratio and
constant infrared spectral index challenge the notion that the IR and X-ray
emission are connected to the same electrons. We, therefore, posit that the
population of electrons responsible for both the IR and X-ray emission are
generated by an acceleration mechanism that leaves the bulk of the electron
energy distribution responsible for the IR emission unchanged, but has a
variable high-energy cutoff. Occasionally a tail of electrons >1 GeV is
generated, and it is this high-energy tail that gives rise to the X-ray
outbursts. One possible explanation for this type of variation is from the
turbulence induced by a magnetorotational instability, in which the outer scale
length of the turbulence varies and changes the high-energy cutoff.Comment: 11 pages, 7 figures (color), Accepted for publication in ApJ.
Resolution (Fig 1&2) downgraded for astro-ph. For full resolution, see
http://casa.colorado.edu/~hornstei/sgracolor.pd
- …