9 research outputs found
Movement of pulsed resource subsidies from kelp forests to deep fjords
Resource subsidies in the form of allochthonous primary production drive secondary production in many ecosystems, often sustaining diversity and overall productivity. Despite their importance in structuring marine communities, there is little understanding of how subsidies move through juxtaposed habitats and into recipient communities. We investigated the transport of detritus from kelp forests to a deep Arctic fjord (northern Norway). We quantified the seasonal abundance and size structure of kelp detritus in shallow subtidal (0‒12 m), deep subtidal (12‒85 m), and deep fjord (400‒450 m) habitats using a combination of camera surveys, dive observations, and detritus collections over 1 year. Detritus formed dense accumulations in habitats adjacent to kelp forests, and the timing of depositions coincided with the discrete loss of whole kelp blades during spring. We tracked these blades through the deep subtidal and into the deep fjord, and showed they act as a short-term resource pulse transported over several weeks. In deep subtidal regions, detritus consisted mostly of fragments and its depth distribution was similar across seasons (50% of total observations). Tagged pieces of detritus moved slowly out of kelp forests (displaced 4‒50 m (mean 11.8 m ± 8.5 SD) in 11‒17 days, based on minimum estimates from recovered pieces), and most (75%) variability in the rate of export was related to wave exposure and substrate. Tight resource coupling between kelp forests and deep fjords indicate that changes in kelp abundance would propagate through to deep fjord ecosystems, with likely consequences for the ecosystem functioning and services they provide.acceptedVersio
Aquatic Life Cycle Strategies: Survival in a variable environment. Occasional Publication of the Marine Biological Association 6
In a rapidly changing world it is essential that we should understand the factors controlling the sustainability of ecosystems. In aquatic ecosystems, both sensitivity and recoverability are influenced strongly by the life cycles of the organisms concerned. The response of individual species to change and their chances of survival in a variable environment can be affected dramatically by the timing and location of disturbances relative to their natural rhythms of fertilisation, dispersal and development.
This book illustrates the wide range of issues that must be addressed to understand such relationships. Its purpose is to consider those aspects of life history that make aquatic organisms especially susceptible to (or adaptable to) changing environments -and hence to discuss links between impacts on individuals and the consequent effects on populations and communities
Lipids and life strategy of Arctic Calanus
The three Arctic Calanus species, C. finmarchicus (Gunnerus, 1765), C. glacialis (Jaschov, 1955), and C. hyperboreus, are the most important herbivores in Arctic seas in terms of species biomass. They play a key role in the lipid-based energy flux in the Arctic, converting low-energy carbohydrates and proteins in ice algae and phytoplankton into high-energy wax esters. In this paper we review the over-wintering strategy, seasonal migration, stage development, life span, feeding strategy, body size, lipid biochemistry and the geographic distribution of the three dominant Calanus species in Arctic waters. We then relate these parameters to other biotic and abiotic factors, such as the timing of the Arctic phytoplankton and ice algae bloom, sea ice cover and climate variability. We also present new data on fatty acid and fatty alcohol content in the three Calanus species in addition to reviewing the available literature on these topics. These data are analysed for species homogeneity and geographic grouping. The dominance of diatom fatty acid trophic markers in the lipids of Calanus underpins the importance of diatoms as Arctic primary producers, even if dinoflagellates and Phaeocystis pouchetii can also be important food sources for the calanoid copepods. We conclude that the Arctic Calanus species are herbivores, engineered to feed on the Arctic bloom, and that the timing of the bloom is the most important factor in determining the life strategies of the individual species
Related antipodes: a comparative study on digestive endopeptidases from Northern krill and Antarctic krill (Euphausiacea)
The Antarctic krill, Euphausia superba, and the Northern krill, Meganyctiphanes norvegica, are closely related species but occupy significantly different trophic and climatic environments. E. superba holds a key position as a phytoplankton grazer in the Southern Ocean. The omnivorous M. norvegica is an important member of plankton communities in the Northeast Atlantic. Both species expressed high proteolytic activities which were dominated by serine proteinases. In the stomachs of Antarctic krill, activities of total proteinase, trypsin, and chymotrypsin were significantly higher than in Northern krill. In the midgut glands, however, total proteinase and trypsin activities were similar in both species, but chymotrypsin activity was significantly higher in Antarctic krill. Moreover, Antarctic krill expressed four trypsin isoforms while only one isoform appeared in Northern krill. Chymotrypsin was present in either species as one single isoform. Antarctic krill adapted to the low and patchy distribution of food by elevated enzyme activities and the expression of trypsin isoforms with slightly different catalytic properties. Presumably, these enzymes facilitate in concerted action the efficient utilization of proteins from phytoplankton, the major food. Northern krill, in contrast, seems not to be equipped to face food limitation. It expresses a “simple” or “basic” set of digestive enzymes for utilizing abundant and easily digestible prey