953 research outputs found

    Reverse-engineering the cortical architecture for controlled semantic cognition.

    Get PDF
    We employ a reverse-engineering approach to illuminate the neurocomputational building blocks that combine to support controlled semantic cognition: the storage and context-appropriate use of conceptual knowledge. By systematically varying the structure of a computational model and assessing the functional consequences, we identified the architectural properties that best promote some core functions of the semantic system. Semantic cognition presents a challenging test case, as the brain must achieve two seemingly contradictory functions: abstracting context-invariant conceptual representations across time and modalities, while producing specific context-sensitive behaviours appropriate for the immediate task. These functions were best achieved in models possessing a single, deep multimodal hub with sparse connections from modality-specific regions, and control systems acting on peripheral rather than deep network layers. The reverse-engineered model provides a unifying account of core findings in the cognitive neuroscience of controlled semantic cognition, including evidence from anatomy, neuropsychology and functional brain imaging

    "Pre-semantic" cognition revisited: Critical differences between semantic aphasia and semantic dementia

    Get PDF
    Patients with semantic dementia show a specific pattern of impairment on both verbal and non-verbal “pre-semantic” tasks: e.g., reading aloud, past tense generation, spelling to dictation, lexical decision, object decision, colour decision and delayed picture copying. All seven tasks are characterised by poorer performance for items that are atypical of the domain and “regularisation errors” (irregular/atypical items are produced as if they were domain-typical). The emergence of this pattern across diverse tasks in the same patients indicates that semantic memory plays a key role in all of these types of “pre-semantic” processing. However, this claim remains controversial because semantically-impaired patients sometimes fail to show an influence of regularity. This study demonstrates that (a) the location of brain damage and (b) the underlying nature of the semantic deficit affect the likelihood of observing the expected relationship between poor comprehension and regularity effects. We compared the effect of multimodal semantic impairment in the context of semantic dementia and stroke aphasia on the seven “pre-semantic” tasks listed above. In all of these tasks, the semantic aphasia patients were less sensitive to typicality than the semantic dementia patients, even though the two groups obtained comparable scores on semantic tests. The semantic aphasia group also made fewer regularisation errors and many more unrelated and perseverative responses. We propose that these group differences reflect the different locus for the semantic impairment in the two conditions: patients with semantic dementia have degraded semantic representations, whereas semantic aphasia patients show deregulated semantic cognition with concomitant executive deficits. These findings suggest a reinterpretation of single case studies of comprehension-impaired aphasic patients who fail to show the expected effect of regularity on “pre-semantic” tasks. Consequently, such cases do not demonstrate the independence of these tasks from semantic memory

    Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy

    Get PDF
    Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants

    Universal Computation with Arbitrary Polyomino Tiles in Non-Cooperative Self-Assembly

    Get PDF
    In this paper we explore the power of geometry to overcome the limitations of non-cooperative self-assembly. We define a generalization of the abstract Tile Assembly Model (aTAM), such that a tile system consists of a collection of polyomino tiles, the Polyomino Tile Assembly Model (polyTAM), and investigate the computational powers of polyTAM systems at temperature 1, where attachment among tiles occurs without glue cooperation (i.e., without the enforcement that more than one tile already existing in an assembly must contribute to the binding of a new tile). Systems composed of the unit-square tiles of the aTAM at temperature 1 are believed to be incapable of Turing universal computation (while cooperative systems, with temperature \u3e 1, are able). As our main result, we prove that for any polyomino P of size 3 or greater, there exists a temperature-1 polyTAM system containing only shape-P tiles that is computationally universal. Our proof leverages the geometric properties of these larger (relative to the aTAM) tiles and their abilities to effectively utilize geometric blocking of particular growth paths of assemblies, while allowing others to complete. In order to prove the computational powers of polyTAM systems, we also prove a number of geometric properties held by all polyominoes of size ≥ 3. To round out our main result, we provide strong evidence that size-1 (i.e. aTAM tiles) and size-2 polyomino systems are unlikely to be computationally universal by showing that such systems are incapable of geometric bitreading, which is a technique common to all currently known temperature-1 computationally universal systems. We further show that larger polyominoes with a limited number of binding positions are unlikely to be computationally universal, as they are only as powerful as temperature-1 aTAM systems. Finally, we connect our work with other work on domino self-assembly to show that temperature-1 assembly with at least 2 distinct shapes, regardless of the shapes or their sizes, allows for universal computation

    'Pre-semantic' cognition in semantic dementia: Six deficits in search of an explanation.

    Get PDF
    ‘‘Oh, sir, you must be well aware that life is full of endless absurdities which do not even have to appear plausible, since they are true.’’ —From Six Characters in Search of an Author, by Luigi Pirandello (1921) & On the basis of a theory about the role of semantic knowl-edge in the recognition and production of familiar words and objects, we predicted that patients with semantic dementia would reveal a specific pattern of impairment on six different tasks typically considered ‘‘pre-’ ’ or ‘‘non-’ ’ semantic: reading aloud, writing to dictation, inflecting verbs, lexical decision, object decision, and delayed copy drawing. The prediction was that all tasks would reveal a frequency-by-typicality interaction, with patients performing especially poorly on lower-frequency items with atypical structure (e.g., words with an atypical spelling-to-sound relationship; objects with an atypical feature for their class, such as the hump on a camel, etc). Of 84 critical observations (14 patients performing 6 tasks), this prediction was correct in 84/84 cases; and a single component in a factor analysis accounted for 87 % of the variance across seven mea-sures: each patient’s degree of impairment on atypical items in the six experimental tasks and a separate composite score re-f lecting his or her degree of semantic impairment. Errors also consistently conformed to the predicted pattern for both ex-pressive and receptive tasks, with responses reflecting residual knowledge about the typical surface structure of each domain. We argue that these results cannot be explained as associated but unrelated deficits but instead are a principled consequence of a primary semantic impairment. &amp

    The Two-Handed Tile Assembly Model is not Intrinsically Universal

    Get PDF
    The Two-Handed Tile Assembly Model (2HAM) is a model of algorithmic self-assembly in which large structures, or assemblies of tiles, are grown by the binding of smaller assemblies. In order to bind, two assemblies must have matching glues that can simultaneously touch each other, and stick together with strength that is at least the temperature τ, where τ is some fixed positive integer. We ask whether the 2HAM is intrinsically universal. In other words, we ask: is there a single 2HAM tile set U which can be used to simulate any instance of the model? Our main result is a negative answer to this question. We show that for all τ′ < τ, each temperature-τ′ 2HAM tile system does not simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal and stands in contrast to the fact that the (single-tile addition) abstract Tile Assembly Model is intrinsically universal. On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are indeed intrinsically universal. In other words, for each τ there is a single intrinsically universal 2HAM tile set U_τ that, when appropriately initialized, is capable of simulating the behavior of any temperature-τ 2HAM tile system. As a corollary, we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing simulation power within each hierarchy. Finally, we show that for each τ, there is a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems

    The Two-Handed Tile Assembly Model Is Not Intrinsically Universal

    Get PDF
    In this paper, we study the intrinsic universality of the well-studied Two-Handed Tile Assembly Model (2HAM), in which two “supertile” assemblies, each consisting of one or more unit-square tiles, can fuse together (self-assemble) whenever their total attachment strength is at least the global temperature τ. Our main result is that for all τ′ < τ, each temperature-τ′ 2HAM tile system cannot simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal, in stark contrast to the simpler abstract Tile Assembly Model which was shown to be intrinsically universal (The tile assembly model is intrinsically universal, FOCS 2012). On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are intrinsically universal: for each τ there is a single universal 2HAM tile set U that, when appropriately initialized, is capable of simulating the behavior of any temperature τ 2HAM tile system. As a corollary of these results we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing power within each hierarchy. Finally, we show how to construct, for each τ, a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems
    corecore