31,438 research outputs found

    The Fate of Exomoons in White Dwarf Planetary Systems

    Get PDF
    Roughly 1000 white dwarfs are known to be polluted with planetary material, and the progenitors of this material are typically assumed to be asteroids. The dynamical architectures which perturb asteroids into white dwarfs are still unknown, but may be crucially dependent on moons liberated from parent planets during post-main-sequence gravitational scattering. Here, we trace the fate of these exomoons, and show that they more easily achieve deep radial incursions towards the white dwarf than do scattered planets. Consequently, moons are likely to play a significant role in white dwarf pollution, and in some cases may be the progenitors of the pollution itself.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Liberating exomoons in white dwarf planetary systems

    Get PDF
    Previous studies indicate that more than a quarter of all white dwarf (WD) atmospheres are polluted by remnant planetary material, with some WDs being observed to accrete the mass of Pluto in 10^6 years. The short sinking timescale for the pollutants indicate that the material must be frequently replenished. Moons may contribute decisively to this pollution process if they are liberated from their parent planets during the post-main-sequence evolution of the planetary systems. Here, we demonstrate that gravitational scattering events among planets in WD systems easily triggers moon ejection. Repeated close encounters within tenths of a planetary Hill radii are highly destructive to even the most massive, close-in moons. Consequently, scattering increases both the frequency of perturbing agents in WD systems, as well as the available mass of polluting material in those systems, thereby enhancing opportunities for collision and fragmentation and providing more dynamical pathways for smaller bodies to reach the WD. Moreover, during intense scattering, planets themselves have pericenters with respect to the WD of only a fraction of an AU, causing extreme Hill-sphere contraction, and the liberation of moons into WD-grazing orbits. Many of our results are directly applicable to exomoons orbiting planets around main sequence stars.Comment: Published (MNRAS): First published online January 19, 201

    Near-Infrared Photometry of Irregular Satellites of Jupiter and Saturn

    Full text link
    We present JHKs photometry of 10 Jovian and 4 Saturnian irregular satellites, taken with the Near-InfraRed Imager (NIRI) at the 8-m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C, P and D-type asteroids, although J XII Ananke and S IX Phoebe show weak indications of possible water features in the H filter. The four members of the Himalia-family have similar near-infrared colors, as do the two members of the Gallic family, S XX Paaliaq and S XXIX Siarnaq. From low resolution normalized reflectance spectra based on the broadband colors and covering 0.4 to 2.2 microns, the irregular satellites are identified as C-type (J VII Pasiphae, J VI Himalia and S IX Phoebe), P-type (J XII Ananke and J XVIII Themisto) and D-type (J IX Carme and J X Sinope), showing a diversity of origins of these objects.Comment: Accepted by ApJ Letters (emulateapj, 8pages, including 4 figures); Typos corrected, references adde

    Electrical and magnetic properties of the complete solid solution series between SrRuO3 and LaRhO3: Filling t2g versus tilting

    Get PDF
    A complete solid solution series between the t2g^4 perovskite ferromagnet SrRuO3 and the diamagnetic t2g^6 perovskite LaRhO3 has been prepared. The evolution with composition x in (SrRuO3)(1-x)(LaRhO3)(x) of the crystal structure and electrical and magnetic properties has been studied and is reported here. As x increases, the octahedral tilt angle gradually increases, along with the pseudocubic lattice parameter and unit cell volume. Electrical resistivity measurements reveal a compositionally driven metal to insulator transition between x = 0.1 and 0.2. Ferromagnetic ordering gives over to glassy magnetism for x > 0.3 and no magnetic ordering is found above 2 K for x > 0.5. M_sat and Theta_CW decrease with increasing x and remain constant after x = 0.5. The magnetism appears poised between localized and itinerant behavior, and becomes more localized with increasing x as evidenced by the evolution of the Rhodes-Wohlfarth ratio. mu_eff per Ru is equal to the quenched spin-only S value across the entire solid solution. Comparisons with Sr(1-x)Ca(x)RuO3 reinforce the important role of structural distortions in determining magnetic ground state. It is suggested that electrical transport and magnetic properties are not strongly coupled in this system

    Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes

    Get PDF
    We have developed a modified form of the equations of smoothed particle magnetohydrodynamics which are stable in the presence of very steep density gradients. Using this formalism, we have performed simulations of the collapse of magnetised molecular cloud cores to form protostars and drive outflows. Our stable formalism allows for smaller sink particles (< 5 AU) than used previously and the investigation of the effect of varying the angle, {\theta}, between the initial field axis and the rotation axis. The nature of the outflows depends strongly on this angle: jet-like outflows are not produced at all when {\theta} > 30{\deg}, and a collimated outflow is not sustained when {\theta} > 10{\deg}. No substantial outflows of any kind are produced when {\theta} > 60{\deg}. This may place constraints on the geometry of the magnetic field in molecular clouds where bipolar outflows are seen.Comment: Accepted for publication in MNRAS, 13 pages, 14 figures. Animations can be found at http://www.astro.ex.ac.uk/people/blewis/research/outflows_misaligned_fields.htm

    Multi-object spectroscopy of the field surrounding PKS 2126-158: Discovery of a z=0.66 galaxy group

    Full text link
    The high-redshift radio-loud quasar PKS 2126-158 is found to have a large number of red galaxies in close apparent proximity. We use the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to obtain optical spectra for a large fraction of these sources. We show that there is a group of galaxies at z0.66z\sim0.66, coincident with a metal-line absorption system seen in the quasar's optical spectrum. The multiplexing capabilities of GMOS also allow us to measure redshifts of many foreground galaxies in the field surrounding the quasar. The galaxy group has five confirmed members, and a further four fainter galaxies are possibly associated. All confirmed members exhibit early-type galaxy spectra, a rare situation for a Mg II absorbing system. We discuss the relationship of this group to the absorbing gas, and the possibility of gravitational lensing of the quasar due to the intervening galaxies.Comment: Monthly Notices of the Royal Astronomical Society, in press. 10 pages, 8 figure

    Ionized Gas in the Galactic Center: New Observations and Interpretation

    Get PDF
    We present new observations of the [Ne II] emission from the ionized gas in Sgr A West with improved resolution and sensitivity. About half of the emission comes from gas with kinematics indicating it is orbiting in a plane tipped about 25\degree\ from the Galactic plane. This plane is consistent with that derived previously for the circumnuclear molecular disk and the northern arm and western arc ionized features. However, unlike most previous studies, we conclude that the ionized gas is not moving along the ionized features, but on more nearly circular paths. The observed speeds are close to, but probably somewhat less than expected for orbital motions in the potential of the central black hole and stars and have a small inward component. The spatial distribution of the emission is well fitted by a spiral pattern. We discuss possible physical explanations for the spatial distribution and kinematics of the ionized gas, and conclude that both may be best explained by a one-armed spiral density wave, which also accounts for both the observed low velocities and the inward velocity component. We suggest that a density wave may result from the precession of elliptical orbits in the potential of the black hole and stellar mass distribution.Comment: 28 pages, 13 figures, ApJ in pres
    corecore