201 research outputs found
Improved timber harvest techniques maintain biodiversity in tropical forests
Tropical forests are selectively logged at 20 times the rate at which they are cleared, and at least a fifth have already been disturbed in this way. In a recent pan-tropical assessment, Burivalova et al. demonstrate the importance of logging intensity as a driver of biodiversity decline in timber estates. Their analyses reveal that species richness of some taxa could decline by 50% at harvest intensities of 38 m3 ha-1. However, they did not consider the extraction techniques that lead to these intensities. Here, we conduct a complementary meta-analysis of assemblage responses to differing logging practices: conventional logging and reduced-impact logging. We show that biodiversity impacts are markedly less severe in forests that utilise reduced-impact logging, compared to those using conventional methods. While supporting the initial findings of Burivalova et al., we go on to demonstrate that best practice forestry techniques curtail the effects of timber extraction regardless of intensity. Therefore, harvest intensities are not always indicative of actual disturbance levels resulting from logging. Accordingly, forest managers and conservationists should advocate practices that offer reduced collateral damage through best practice extraction methods, such as those used in reduced-impact logging. Large-scale implementation of this approach would lead to improved conservation values in the 4 million km2 of tropical forests that are earmarked for timber extraction
Mixed policies give more options in multifunctional tropical forest landscapes
This archive stores data utilised in: Mixed policies give more options in multifunctional tropical forest landscapesLaw E.A., Bryan B.A., Meijaard E., Mallawaarachchi T., Struebig M.J., Watts M., Wilson K.A.Journal of Applied Ecology 2016Corresponding author:Elizabeth A. Law*The University of Queensland, School of Biological [email protected]: Jan 18, 2016----------------------DETAILS:Along with this txt file, this archive contains five csv files included, and one folder containing a shape file. These are in the typical format required for input into Marxan with Zones, available from http://www.uq.edu.au/marxan/ (also see new cloud development on Marxan.net). The data time frames relate to a start year of 2008 (see associated publication for further details.Readme.txt - this documentZones.csv - contains zone identification numbers (zoneid) and names (zonenames)FeatureTargets.csv - contains feature id (id), the targets (target; units are specified in supplementary material), species penalty factor (spf; weighting number to determine if the feature is considered as an optimisation threshold constraint, 1, or not, 0), and feature names (name; features 1-9 and 19-20 represent primate species, 10-14 forest types, and 15-17 production values smallholder agriculture, timber, and oil palm, and 18 carbon emissions reduction.Extant.csv - contains planning unit id (pu), the extant class (class; using descriptive codes), and the area (area.ha, in hectares).PuVsFeatures.csv - for every planning unit and feature combination, the 'amount' gives the maximum possible achievement for that feature in that planning unit. Units of measurement are indicated in the main text/supplementary methods and associated papers detailing data development.BaselineZoneContributions.csv - for every zone, planning unit, and feature combination (identified using zoneid, puid, featid codes found in their respective files), this gives the fraction of the full amount possible to achieve within that pu for that feature. Pulayer folder - contains a shape file created in arcgis for the planning units. Coordinate reference system is WGS 84 / UTM zone 49S. One column in the attribute table, indicating the planning unit number (pu)
Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia
Forest and peatland fires during the 2015 El Niño drought were amongst the worst on record in Southeast Asia. They were a major contributor of carbon emissions across the region, with the associated smoke-induced haze causing an air pollution crisis that affected millions of people. We present evidence of air pollution impacts on biodiversity. Using daily acoustic recordings in central Singapore, we monitored the dawn chorus before, during and after the haze event. We demonstrate that levels of ecological community acoustic activity dropped dramatically during the haze, and that this decline was significantly associated with levels of air pollution considered ‘unhealthy’ to the human population. Acoustic disruption was apparent across four common indices of soundscape activity, with only a partial recovery to pre-haze levels observed 16 weeks after the smoke had dissipated. These impacts on ecological communities were likely to be even more severe closer to the fires, where air pollution levels were reported to be 15-fold greater than those recorded in Singapore. Our results indicate that large-scale air pollution crises may have hitherto underestimated and potentially far-reaching impacts on biodiversity, especially in parts of the world prone to extensive forest fires
Recommended from our members
Riparian buffers act as microclimatic refugia in oil palm landscapes
1. There is growing interest in the ecological value of set-aside habitats around rivers in tropical agriculture. These riparian buffers typically comprise forest or other non production habitat, and are established to maintain water quality and hydrological processes, whilst also supporting biodiversity, ecosystem function and landscape connectivity.
2. We investigated the capacity for riparian buffers to act as microclimatic refugia by combining field-based measurements of temperature, humidity, and dung beetle communities with remotely-sensed data from LiDAR across an oil palm dominated landscape in Borneo.
3. Riparian buffers offer a cool and humid habitat relative to surrounding oil palm plantations, with wider buffers characterised by conditions comparable to riparian sites in continuous logged forest.
4. High vegetation quality and topographic sheltering were strongly associated with cooler and more humid microclimates in riparian habitats across the landscape. Variance in beetle diversity was also predicted by both proximity-to-edge and microclimatic conditions within the buffer, suggesting that narrow buffers amplify the negative impacts that high temperatures have on biodiversity.
5. Synthesis and applications. Widely-legislated riparian buffer widths of 20-30 m each side of a river may provide drier and less humid microclimatic conditions than continuous forest. Adopting wider buffers and maintaining high vegetation quality will ensure set-asides established for hydrological reasons bring co-benefits for terrestrial biodiversity, both now, and in the face of anthropogenic climate change.This work was funded by the Natural Environmental Research Council (NERC) through the Human Modified Tropical Forests programme (NE/K016261/1; NE/K016377/1), as well as the Newton--Ungku Omar Fund via the British Council and Malaysian Industry -Government Group for High Technology (216433953). NERC also funded the PhD studentship for JW (NE/L002485/1) and research fellowship of TJ (NE/S01537X/1)
Riparian buffers act as microclimatic refugia in oil palm landscapes
1. There is growing interest in the ecological value of set-aside habitats around rivers in tropical agriculture. These riparian buffers typically comprise forest or other non production habitat, and are established to maintain water quality and hydrological processes, whilst also supporting biodiversity, ecosystem function and landscape connectivity.
2. We investigated the capacity for riparian buffers to act as microclimatic refugia by combining field-based measurements of temperature, humidity, and dung beetle communities with remotely-sensed data from LiDAR across an oil palm dominated landscape in Borneo.
3. Riparian buffers offer a cool and humid habitat relative to surrounding oil palm plantations, with wider buffers characterised by conditions comparable to riparian sites in continuous logged forest.
4. High vegetation quality and topographic sheltering were strongly associated with cooler and more humid microclimates in riparian habitats across the landscape. Variance in beetle diversity was also predicted by both proximity-to-edge and microclimatic conditions within the buffer, suggesting that narrow buffers amplify the negative impacts that high temperatures have on biodiversity.
5. Synthesis and applications. Widely-legislated riparian buffer widths of 20-30 m each side of a river may provide drier and less humid microclimatic conditions than continuous forest. Adopting wider buffers and maintaining high vegetation quality will ensure set-asides established for hydrological reasons bring co-benefits for terrestrial biodiversity, both now, and in the face of anthropogenic climate change.This work was funded by the Natural Environmental Research Council (NERC) through the Human Modified Tropical Forests programme (NE/K016261/1; NE/K016377/1), as well as the Newton--Ungku Omar Fund via the British Council and Malaysian Industry -Government Group for High Technology (216433953). NERC also funded the PhD studentship for JW (NE/L002485/1) and research fellowship of TJ (NE/S01537X/1)
Orangutan movement and population dynamics across human-modified landscapes : implications of policy and management
Acknowledgements This research was funded by the University of Kent Vice Chancellor’s Scholarship. The field datasets that informed the modelling were funded by the UK Natural Environment Research Council via the Human‐Modified Tropical Forests research program (NE/K016407/1; https://lombok.nerc-hmtf.info/) as well as the Primate Society of Great Britain. We would like to thank the Sabah Biodiversity Council, Sabah Forest Department, Benta Wawasan, and Sabah Softwoods for permitting access. We also thank two anonymous reviewers whose comments improved the manuscript. Funding Research was undertaken with funding from the University of Kents’ Vice Chancellor's Research Scholarship Program.Peer reviewedPublisher PD
Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats
Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue
Ecosystem services from a degraded peatland of Central Kalimantan: implications for policy, planning, and management
Increasingly, landscapes are managed for multiple objectives to balance social, economic, and environmental goals. The Ex-Mega Rice Project (EMRP) peatland in Central Kalimantan, Indonesia provides a timely example with globally significant development, carbon, and biodiversity concerns. To inform future policy, planning, and management in the EMRP, we quantified and mapped ecosystem service values, assessed their spatial interactions, and evaluated the potential provision of ecosystem services under future land-use scenarios. We focus on key policy-relevant regulating (carbon stocks and the potential for emissions reduction), provisioning (timber, crops from smallholder agriculture, palm oil), and supporting (biodiversity) services. We found that implementation of existing land-use plans has the potential to improve total ecosystem service provision. We identify a number of significant inefficiencies, trade-offs, and unintended outcomes that may arise. For example, the potential development of existing palm oil concessions over one-third of the region may shift smallholder agriculture into low-productivity regions and substantially impact carbon and biodiversity outcomes. While improved management of conservation zones may enhance the protection of carbon stocks, not all biodiversity features will be represented, and there will be a reduction in timber harvesting and agricultural production. This study highlights how ecosystem service analyses can be structured to better inform policy, planning, and management in globally significant but data-poor regions.
Read More: http://www.esajournals.org/doi/abs/10.1890/13-2014.
- …