10,264 research outputs found

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Economical Evolution: Microbes Reduce the Synthetic Cost of Extracellular Proteins

    Get PDF
    Protein evolution is not simply a race toward improved function. Because organisms compete for limited resources, fitness is also affected by the relative economy of an organism’s proteome. Indeed, many abundant proteins contain relatively high percentages of amino acids that are metabolically less taxing for the cell to make, thus reducing cellular cost. However, not all abundant proteins are economical, and many economical proteins are not particularly abundant. Here we examined protein composition and found that the relative synthetic cost of amino acids constrains the composition of microbial extracellular proteins. In Escherichia coli, extracellular proteins contain, on average, fewer energetically expensive amino acids independent of their abundance, length, function, or structure. Economic pressures have strategically shaped the amino acid composition of multicomponent surface appendages, such as flagella, curli, and type I pili, and extracellular enzymes, including type III effector proteins and secreted serine proteases. Furthermore, in silico analysis of Pseudomonas syringae, Mycobacterium tuberculosis, Saccharomyces cerevisiae, and over 25 other microbes spanning a wide range of GC content revealed a broad bias toward more economical amino acids in extracellular proteins. The synthesis of any protein, especially those rich in expensive aromatic amino acids, represents a significant investment. Because extracellular proteins are lost to the environment and not recycled like other cellular proteins, they present a greater burden on the cell, as their amino acids cannot be reutilized during translation. We hypothesize that evolution has optimized extracellular proteins to reduce their synthetic burden on the cell

    A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    Get PDF
    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software

    RANKL-Targeted Therapies: The Next Frontier in the Treatment of Male Osteoporosis

    Get PDF
    Male osteoporosis is an increasingly recognized problem in aging men. A common cause of male osteoporosis is hypogonadism. Thousands of men with prostate cancer are treated with androgen deprivation therapy, a treatment that dramatically reduces serum testosterone and causes severe hypogonadism. Men treated with androgen deprivation therapy experience a decline in bone mineral density and have an increased rate of fracture. This paper describes prostate cancer survivors as a model of hypogonadal osteoporosis and discusses the use of RANKL-targeted therapies in osteoporosis. Denosumab, the only RANKL-targeted therapy currently available, increases bone mineral density and decreases fracture rate in men with prostate cancer. Denosumab is also associated with delayed time to first skeletal-related event and an increase in bone metastasis-free survival in these men. It is reasonable to investigate the use of RANKL-targeted therapy in male osteoporosis in the general population

    Ancient Literary Criticism and Major Structural Relationships: A Comparative Analysis

    Get PDF
    The texts of the New Testament (NT) emerged during an era that produced robust literary and rhetorical criticism. This article draws from works produced during that period to investigate similarities and differences between the figures discussed by ancient literary theorists and the Major Structural Relationships (MSRs) identified by David R. Bauer and Robert A. Traina. Ultimately, this article reveals that the MSRs proposed in their Inductive Bible Study (IBS) handbook are not merely an invention of modern literary critical reading strategies but reflect devices incorporated into ancient literature and identified and discussed by ancient literary theorists

    Cellular aging and restorative processes: Subjective sleep quality and duration moderate the association between age and telomere length in a sample of middle-aged and older adults

    Get PDF
    pre-printStudy Objectives: To examine whether subjective sleep quality and sleep duration moderate the association between age and telomere length (TL). Design: Participants completed a demographic and sleep quality questionnaire, followed by a blood draw. Setting: Social Neuroscience Laboratory. Participants: One hundred fifty-four middle-aged to older adults (age 45-77 y) participated. Participants were excluded if they were on immunosuppressive treatment and/or had a disease with a clear immunologic (e.g., cancer) component. Interventions: N/A. Measurements and Results: Subjective sleep quality and sleep duration were assessed using the Pittsburgh Sleep Quality Index (PSQI) and TL was determined using peripheral blood mononuclear cells (PBMCs). There was a significant first-order negative association between age and TL. Age was also negatively associated with the self-reported sleep quality item and sleep duration component of the PSQI. A significant age × self-reported sleep quality interaction revealed that age was more strongly related to TL among poor sleepers, and that good sleep quality attenuated the association between age and TL. Moreover, adequate subjective sleep duration among older adults (i.e. greater than 7 h per night) was associated with TL comparable to that in middle-aged adults, whereas sleep duration was unrelated to TL for the middle-aged adults in our study. Conclusions: The current study provides evidence for an association between sleep quality, sleep duration, and cellular aging. Among older adults, better subjective sleep quality was associated with the extent of cellular aging, suggesting that sleep duration and sleep quality may be added to a growing list of modifiable behaviors associated with the adverse effects of aging

    Perceptual adaptation by normally hearing listeners to a simulated "hole" in hearing

    Get PDF
    Simulations of cochlear implants have demonstrated that the deleterious effects of a frequency misalignment between analysis bands and characteristic frequencies at basally shifted simulated electrode locations are significantly reduced with training. However, a distortion of frequency-to-place mapping may also arise due to a region of dysfunctional neurons that creates a "hole" in the tonotopic representation. This study simulated a 10 mm hole in the mid-frequency region. Noise-band processors were created with six output bands (three apical and three basal to the hole). The spectral information that would have been represented in the hole was either dropped or reassigned to bands on either side. Such reassignment preserves information but warps the place code, which may in itself impair performance. Normally hearing subjects received three hours of training in two reassignment conditions. Speech recognition improved considerably with training. Scores were much lower in a baseline (untrained) condition where information from the hole region was dropped. A second group of subjects trained in this dropped condition did show some improvement; however, scores after training were significantly lower than in the reassignment conditions. These results are consistent with the view that speech processors should present the most informative frequency range irrespective of frequency misalignment. 0 2006 Acoustical Society of America
    corecore