4 research outputs found

    Additional file 1: Figure S1. of Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: importance of allergic sensitization

    No full text
    Conserved promoter regions. Black lines mark loci that are conserved between human and mouse in the promoter region of IL4, IFNγ, and ARG2. White areas are not conserved. Conserved regions were identified using Standard Nucleotide BLAST (blastn for more dissimilar regions; https://blast.ncbi.nlm.nih.gov/Blast.cgi.) for the 400 nucleotides upstream of the transcriptional start site (TSS) in the human sequence. The NOS2A promoter region under investigation is not conserved between mice and human. Figure S2: Schematic demonstration of collected measures. Numbers in the box represent the number of participants. N:n = number of repeat subjects: number of observations. Grey dotted box indicates two measures (both time 1 and time 2, 6 months apart) available and white box only one measure (Time 1) available. N = 10 participants dropped due to invalid personal or residential air pollution measures. N = 17 participants were further excluded from the analysis due to missing total IgE (N = 16) and invalid DNA methylation due to technical failures in the laboratory (N = 1), resulting in N = 136 of the final sample size. Figure S3: Correlations between day 1 and day 6 buccal cell DNA methylations of (a) IL4 (CpG−326,CpG−48, (b) IFNγ (CpG−186,CpG−54), and (c) NOS2A (CpG+5099, CpG+5106) and (d) ARG2 (average methylation of CpG−32, CpG−30, and CpG−26), Spearman correlation coefficient presented. (DOCX 466 kb

    Additional file 1: Table S1. of Short-term exposure to PM2.5 and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children

    No full text
    Promoter region CpG locations and rationale. Table S2. Primers for PCR and pyrosequencing. Table S3. Intraclass correlation coefficients (ICC) among repeated measures of buccal cell DNA methylation. Table S4. Associations between residential PM2.5 and Day 6 DNA methylation: by asthma and overweight. Table S5. Associations between residential V and Day 6 DNA methylation: by asthma and overweight. Figure S1. Targeted CpG sites in promoter region. Figure S2. Seasonal variations in (a) PM2.5 and (b) vanadium (V). Figure S3. Repeated residential indoor measures of (a) PM2.5 and (b) vanadium (V), 6 months later. Figure S4. Distribution of percent DNA methylation of IL4, IFNγ, NOS2A, and ARG2 at Day 6. Figure S5. Correlation matrix for Day 6-buccal cell DNA methylations of IL4, IFNγ, NOS2A, and averaged ARG2 at Time 1. (DOCX 286 kb

    Additional file 1: Figure S1. of Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter

    No full text
    Sampling scheme for accelerometer, black carbon (BC), buccal swabs for DNA and RNA analysis and spirometry. Figure S2. Schematic representation of the FOXP3 gene and the six CpG sites in the promoter region that were investigated. TSS transcription start site, TSDR Treg-specific demethylated region, CNS conserved non-coding sequence. Figure S3. Correlations of FOXP3 methylation across promoter regions and with mRNA relative expression. Figure S4. Distribution of FOXP3 promoter methylation in females vs. males stratified by physical activity (active vs. non-active). Females have lower FOXP3 promoter methylation compared to males. Figure S5. Distribution of FOXP3 promoter methylation in females vs. males stratified by BC concentration (low vs. high). Females have lower FOXP3 promoter methylation compared to males. Figure S6. Distribution of FOXP3 promoter methylation stratified by combined activity and BC concentration in females (n = 67). Figure S7. Distribution of FOXP3 promoter methylation stratified by combined activity and BC concentration in males (n = 68)

    Additional file 2: Table S1. of Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter

    No full text
    Primers for PCR and pyrosequencing experiments. Table S2. Correlations of day 1 vs. day 6 FOXP3 methylation and mRNA expression. Table S3. Among children with high BC exposure, there is a trend towards active children (coded 1) having a greater odds of lower methylation compared to non-active children (coded 0). Table S4. Higher FOXP3 promoter 2 methylation is associated with overall lower lung function (n = 135). Table S5. The relationship between FOXP3 promoter 2 methylation and lung function does not significantly vary by high vs. low BC exposure. Table S6. Among children with high BC, the association between physical activity and FOXP3 promoter methylation is greater in females. Table S7. The relationship between FOXP3 promoter methylation and lung function is greater among females compared to that among males
    corecore