53 research outputs found

    (E)-2,3-Bis[(E)-benzyl­idene­amino]­but-2-enedinitrile

    Get PDF
    The asymmetric unit of the title compound, C18H12N4, consists of a half-mol­ecule, where the two halves of the mol­ecule are related by inversion symmetry. The mol­ecule is effectively planar, with the largest deviation from the 22-atom mean plane, measuring 0.024 (2) Å, exhibited by the ortho-C atom of the phenyl ring. The crystal structure exhibits π-stacking, with an inter­planar spacing of 3.431 (3) Å

    2-(4-Chloro­phen­yl)naphtho­[1,8-de][1,3,2]diaza­borinane

    Get PDF
    The title compound, C16H12BClN2, is one in a series of diaza­borinanes, derived from 1,8-diaminona­phthalene, featuring substitution at the 1, 2 and 3 positions in the nitro­gen-boron heterocycle. The structure deviates from planarity, the torsion angle subtended by the p-chloro­phenyl ring relative to the nitro­gen–boron heterocycle being −44-.3(3)°. The mol­ecules form infinite chains with strong inter­actions between the vacant pz orbital of the B atom and the π-system of an adjacent mol­ecule. The distance between the B atom and the 10-atom centroid of an adjacent naphthalene ring is 3.381 (4) Å. One N-H H atom is weakly hydrogen bonded to the Cl atom of an adjacent mol­ecule. This combination of inter­molecular inter­actions leads to the formation of an infinite two-dimensional network perpendic­ular to the c axis

    2-Phenyl­naphtho­[1,8-de][1,3,2]diaza­borinane

    Get PDF
    The title compound, C16H13BN2, is one compound in a series of diaza­borinanes featuring substitution at the 1, 2 and 3 positions in the nitro­gen–boron heterocycle. The title compound is slightly distorted from planarity, with a dihedral angle of 9.0 (5)° between the mean planes of the naphthalene system and the benzene ring. The m-carbon atom of the benzene ring exhibits the greatest deviation of 0.164 (2) Å from the 19-atom mean plane defined by all non-H atoms. The two N—B—C—C torsion angles are 6.0 (3) and 5.6 (3)°. In the crystal, mol­ecules are linked by π–π inter­actions into columns, with a distance of 3.92 (3) Å between the naphthalene ring centroids. Adjacent π-stacked columns, co-linear with the b-axis, are linked by C—H⋯π inter­actions

    2-[4-(Methyl­sulfan­yl)phen­yl]naphtho[1,8-de][1,3,2]diaza­borinane

    Get PDF
    The title compound, C17H15BN2S, is one member in a series of diaza­borinanes featuring substitution at the 1-, 2- and 3-positions in the nitro­gen–boron heterocycle. The dihedral angle between the mean planes of the naphthalene and phenyl ring systems is 19.86 (6)°. In the crystal structure, two C—H⋯π inter­actions link the mol­ecules into sheets which lie parallel to the bc plane. There is a π–π inter­action between each pair of centrosymmetrically related sheets [centroid–centroid distance = 3.5922 (8) Å]

    1-(5,7-Dihy­droxy-2,2-dimethylchroman-6-yl)ethanone

    Get PDF
    In the title mol­ecule, C13H16O4, the pyran ring is in a half-chair conformation. There is an intra­molecular hydrogen bond involving the ketone O atom and an H atom of a phenol group which forms an S(6) ring. The ketone O atom is also involved in an inter­molecular hydrogen bond with a different phenolic H atom of a symmetry-related mol­ecule, forming C(6) chains along the c-axis direction

    1,4-Bis[(2,2′:6′,2′′-terpyridin-4′-yl)­oxy]butane

    Get PDF
    The title compound, C34H28N6O2, has an inversion centre located at the mid-point of the central C—C bond of the diether bridging unit. The central pyridine rings of the terpyridyl units and the diether chain are co-planar: the maximum deviation from the 18-atom mean plane defined by the bridging unit and the central pyridyl ring is for the pyridyl N atom which sits 0.055 (1) Å above the plane. The dihedral angles between the terminal pyridine rings with this plane are 10.3 (1) and 37.6 (1)°, repectively. In the crystal, weak C—H⋯N inter­actions link the mol­ecules into infinite chains parallel to the a axis

    Cation-/ligand-induced solvent-assisted transformations of Zn(II) and Cu(II) complexes featuring single-pocket multidentate chelating members

    Get PDF
    A new family of single-pocket metal complexes bearing O,N,O-tridentate and O,N-bidentate chelating members {Cu, 1b (P21/n); Ni, 1c (C2/c); Mn, 1d (I2/a); Cu, 2b; and Ni, 2c (both P21/c)}, starting from synthesized and fully characterized Zn(II) (1a; I2/a) and Cu(II) (2a; C2) precursors, were conveniently prepared via cation-induced solvent-assisted and ligand-induced solvent-assisted transformations. Herein, we show multistep solvent-assisted transformations from cis-1a → trans-1b → cis-1c → cis-1d, as well as all-trans 2a → 2b → 2c. All processes are one-way irreversible, as substantiated by thermodynamic aspects (enthalpies based on Gibbs free energies) derived from density functional theory calculations. On the other hand, complex 2a′ (C2/c; a polymorphic form of 2a) was obtained through a routine synthetic procedure. The compounds have been established by various spectroscopic techniques (infrared, UV−vis, ESI-MS, 1H, and 13C NMR), elemental analysis, and X-ray crystallography. Single-crystal X-ray studies reveal that complexes 1a−d exhibit a pseudo-octahedral geometry around each metal center, with 2a displaying a four-coordinate seesaw geometry Cu(II) sphere (Addison parameter; τ = 0.42), while 2a′ (τ = 0.00), 2b (τ = 0.00), and 2c (τ = 0.00) possess a perfect square-planar configuration around each metal center. Furthermore, distortion is stabilized by the presence of peripheral Odonor atoms from the bulky −OMe group, and by virtue of its size, increased bond lengths and angles are accommodated. Ligand substitution induced coordination geometry transformation from quasi-square-planar 2a to perfect square-planar 2b. Assessment of the metric parameter shows that the distances between the two Cu−Omethoxy are all largely positive due to Jahn−Teller distortion, indicating an unprecedented tetragonal bipyramidal geometry in 1b.The National Research Foundation (NRF, South Africa), Atlantic Philanthropies Scholarship and Rhodes University Research Council.http://pubs.acs.org/journal/cgdefuChemistryNon

    LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells

    Get PDF
    Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release

    LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells

    Get PDF
    Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release.</p

    Dynamics of self-threading ring polymers in a gel

    Get PDF
    We study of the dynamics of ring polymers confined to diffuse in a background gel at low concentrations. We do this in order to probe the inter-play between topology and dynamics in ring polymers. We develop an algorithm that takes into account the possibility that the rings hinder their own motion by passing through themselves, i.e. "self-threading". Our results suggest that the number of self-threadings scales extensively with the length of the rings and that this is substantially independent of the details of the model. The slowing down of the rings' dynamics is found to be related to the fraction of segments that can contribute to the motion. Our results give a novel perspective on the motion of ring polymers in gel, for which a complete theory is still lacking, and may help us to understand the irreversible trapping of ring polymers in gel electrophoresis experiments.Comment: 11 pages,14 figures, Soft Matter 201
    corecore