6 research outputs found

    Cholesterol dependence of HTLV-I infection

    Get PDF
    Cholesterol-rich plasma membrane microdomains are important for entry of many viruses, including retro-viruses. Depletion of cholesterol with 2-hydroxypropyl-β-cyclodextrin inhibits entry of human T cell leukemia virus type I (HTLV-1) and HTLV-I envelope pseudotyped lentivirus particles. Using a soluble fusion protein of the HTLV-I surface envelope protein with the immunoglobulin Fc domain, the HTLV-I receptor was found to colocalize with a raft-associated marker and to cluster in specific plasma membrane microdomains. Depletion of cholesterol did not alter receptor binding activity, suggesting a requirement for cholesterol in a postbinding virus entry step

    Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy

    No full text
    We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS) protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12â20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells

    Transduction of Human Primitive Repopulating Hematopoietic Cells With Lentiviral Vectors Pseudotyped With Various Envelope Proteins

    No full text
    Lentiviral vectors are useful for transducing primitive hematopoietic cells. We examined four envelope proteins for their ability to mediate lentiviral transduction of mobilized human CD34+ peripheral blood cells. Lentiviral particles encoding green fluorescent protein (GFP) were pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G), the amphotropic (AMPHO) murine leukemia virus envelope protein, the endogenous feline leukemia viral envelope protein or the feline leukemia virus type C envelope protein. Because the relative amount of genome RNA per ml was similar for each pseudotype, we transduced CD34+ cells with a fixed volume of each vector preparation. Following an overnight transduction, CD34+ cells were transplanted into immunodeficient mice which were sacrificed 12 weeks later. The average percentages of engrafted human CD45+ cells in total bone marrow were comparable to that of the control, mock-transduced group (37–45%). Lenti-particles pseudotyped with the VSV-G envelope protein transduced engrafting cells two- to tenfold better than particles pseudotyped with any of the γ-retroviral envelope proteins. There was no correlation between receptor mRNA levels for the γ-retroviral vectors and transduction efficiency of primitive hematopoietic cells. These results support the use of the VSV-G envelope protein for the development of lentiviral producer cell lines for manufacture of clinical-grade vector
    corecore