30 research outputs found

    White Paintings

    Get PDF
    In my paintings, I strive for a delicate balance between the objects considered and the conspicuous mark. These paintings stir the imagination to encounter a physical space, yet defy complete illusionary abandon through the visceral surface of paint. The brushwork breathes life into the mechanical calculation of the work in process. A successful painting upon completion is a mimetic vision of the spaces via scraped, sprayed, broadly brushed, and tightly interwoven areas of paint. I strive for a humble and honest representation, an essential vision that is defined by the choice of subject, palette, painted mark, and the history of human error as it attempts a calculated process. This essential vision translates tone, shape, and highlight. These paintings exhibit calculated craftsmanship, yet the decisions they embody speak of anti-heroic doubt that attempts to capture the ethereal beauty inherent in the visible

    Cold heteromolecular dipolar collisions

    Get PDF
    We present the first experimental observation of cold collisions between two different species of neutral polar molecules, each prepared in a single internal quantum state. Combining for the first time the techniques of Stark deceleration, magnetic trapping, and cryogenic buffer gas cooling allows the enhancement of molecular interaction time by 105^5. This has enabled an absolute measurement of the total trap loss cross sections between OH and ND3_3 at a mean collision energy of 3.6 cm1^{-1} (5 K). Due to the dipolar interaction, the total cross section increases upon application of an external polarizing electric field. Cross sections computed from \emph{ab initio} potential energy surfaces are in excellent agreement with the measured value at zero external electric field. The theory presented here represents the first such analysis of collisions between a 2Π^2\Pi radical and a closed-shell polyatomic molecule.Comment: 7 pages, 5 figure

    Differential Effects of Beta-Hydroxybutyrate Enantiomers on Induced Pluripotent Stem Derived Cardiac Myocyte Electrophysiology

    No full text
    Beta-hydroxybutyrate (βOHB), along with acetoacetate and acetone, are liver-produced ketone bodies that are increased after fasting or prolonged exercise as an alternative fuel source to glucose. βOHB, as the main circulating ketone body, is not only a G-protein coupled receptor ligand but also a histone deacetylases inhibitor, prompting the reexamination of its role in health and disease. In this study, we compared the effects of two commercial βOHB formulations an enantiomer R βOHB and a racemic mixture ±βOHB on induced pluripotent stem cell cardiac myocytes (iPS-CMs) electrophysiology. Cardiac myocytes were cultured in R βOHB or ±βOHB for at least ten days after lactate selection. Flouvolt or Fluo-4 was used to assay iPS-CMs electrophysiology. We found that while both formulations increased the optical potential amplitude, R βOHB prolonged the action potential duration but ±βOHB shortened the action potential duration. Moreover, ±βOHB increased the peak calcium transient but R βOHB reduced the peak calcium transient. Co-culturing with glucose or fatty acids did not ameliorate the effects, suggesting that βOHB was more than a fuel source. The effect of βOHB on iPS-CMs electrophysiology is most likely stereoselective, and care must be taken to evaluate the role of exogenous βOHB in health and disease

    Separating stem cells by flow cytometry: reducing variability for solid tissues

    Get PDF
    Until there are valid identifiers that visualize stem cells in vivo, we rely upon flow cytometry to enrich for subpopulations with stem cell function. However, data reporting styles for flow cytometric analyses are typically inconsistent, creating challenges in comparing results across publications. In our view, clear reporting guidelines could improve reproducibility of stem cell analyses in solid tissues

    C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and beta-arrestin recruitment

    No full text
    The complement system is a major component of our innate immune system, in which the complement proteins C5a and C5a-des Arg bind to two G-protein-coupled receptors: namely, the C5a receptor (C5a1) and C5a receptor like-2 receptor (C5a2, formerly called C5L2). Recently, it has been demonstrated that C5a, but not C5a-des Arg, upregulates heteromer formation between C5a1 and C5a2, leading to an increase in IL-10 release from human monocyte-derived macrophages (HMDMs). A bioluminescence resonance energy transfer (BRET) assay was used to assess the recruitment of β-arrestins by C5a and C5a-des Arg at the C5a1 and C5a2 receptors. C5a demonstrated elevated β-arrestin 2 recruitment levels in comparison with C5a-des Arg, whereas no significant difference was observed at C5a2. A constitutive complex that formed between β-arrestin 2 and C5a2 accounted for half of the BRET signal observed. Interestingly, both C5a and C5a-des Arg exhibited higher potency for β-arrestin 2 recruitment via C5a2, indicating preference for C5a2 over C5a1. When C5a was tested in a functional ERK1/2 assay in HMDMs, inhibition of ERK1/2 was observed only at concentrations at or above the EC50 for heteromer formation. This suggested that increased recruitment of the β-arrestin-C5a2 complex at these C5a concentrations might have an inhibitory role on C5a1 signaling through ERK1/2. An improved understanding of C5a2 modulation of signaling in acute inflammation could be of benefit in the development of ligands for conditions such as sepsis
    corecore