229 research outputs found

    Geometric Approach to Orbital Formation Mission Design

    Get PDF
    For distributed remote sensing architectures to be useful for collecting data, it is essential to have a methodology for relating orbital formation parameters to remote sensing requirements. Utilizing the characteristics of formation parameters, an orbital design approach is developed that establishes a satellite formation from a desired instantaneous spatial distribution as viewed from a target ground site. To maintain a conceptually basic representation, a geometric approach is used to develop the correlating algorithm. This tool will enable mission planning for orbital formations as well as future concept exploration

    Improvement Happens: An Interview with Deeb Salem, MD and Brian Cohen, MD

    Full text link

    Massive scalar field instability in Kerr spacetime

    Full text link
    We study the Klein-Gordon equation for a massive scalar field in Kerr spacetime in the time-domain. We demonstrate that under conditions of super-radiance, the scalar field becomes unstable and its amplitude grows without bound. We also estimate the growth rate of this instability.Comment: 10 pages, 5 figure

    Quantum kinetic theory model of a continuous atom laser

    Get PDF
    We investigate the feasible limits for realising a continuously evaporated atom laser with high-temperature sources. A plausible scheme for realising a truly continuous atom laser is to outcouple atoms from a partially condensed Bose gas, whilst continuously reloading the system with non-condensed thermal atoms and performing evaporative cooling. Here we use quantum kinetic theory to model this system and estimate feasible limits for the operation of such a scheme. For sufficiently high temperatures, the figure of merit for the source is shown to be the phase-space flux. The dominant process limiting the usage of sources with low phase-space flux is the three-body loss of the condensed gas. We conclude that certain double-magneto-optical trap (MOT) sources may produce substantial mean condensate numbers through continuous evaporation, and provide an atom laser source with a narrow linewidth and reasonable flux.Comment: 28 pages, 5 figure

    Common Raven Impacts on the Productivity of a Small Breeding Population of Snowy Plovers

    Get PDF
    Common ravens (ravens; Corvus corax), an adaptable, synanthropic generalist, have thrived coincident with increasing human landscape modifications and fragmentation, consequently affecting their prey, which are often sensitive native and protected species. Ravens are a conservation concern for the protected western snowy plover (plover; Charadrius nivosus nivosus), causing low nest and chick survival in some breeding areas along the Pacific coast of North America. We used a long-term dataset from a breeding snowy plover monitoring program in Point Reyes National Seashore (PRNS) to investigate potential impacts of ravens on snowy plover nest and fledging success. Between 2002 and 2020, ravens accounted for 33.7% of all plover nest failures and 40.8% of unexclosed plover nest failures. Raven activity varied by plover breeding site, with more ravens observed per survey hour at Kehoe Beach and the Abbotts Lagoon restoration area, sites that had lower fledge success than other breeding areas. Binomial generalized linear mixed models found that plover nest success was best explained by raven activity (negative relationship) and use of nest exclosures (positive relationship). Our model results on snowy plover fledge success were less apparent, resulting in difficult management planning for this vital rate when using exclosures. Furthermore, nest exclosures were effective in increasing long-term snowy plover nest success in an ecosystem inundated by high raven activity. Evidence from PRNS and other plover breeding sites along the Pacific coast point to long-term negative impacts from ravens

    Optimized pulses for the control of uncertain qubits

    Full text link
    Constructing high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for \pi/2- and \pi-pulses, and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses has calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from \pi/2- and \pi-pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter, to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, post facto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.Comment: 38 pages, 15 figures, RevTeX 4.1, minor modifications to the previous versio

    Halo Mass Functions in Early Dark Energy Cosmologies

    Full text link
    We examine the linear density contrast at collapse time, δc\delta_c for large-scale structure in dynamical dark energy cosmologies, including models with early dark energy. Contrary to previous results, we find that as long as dark energy is homogeneous on small scales, δc\delta_c is insensitive to dark energy properties for parameter values fitting current data, including the case of early dark energy. This is significant since using the correct δc\delta_c is crucial for accurate Press-Schechter prediction of the halo mass function. Previous results have found an apparent failing of the extended Press-Schechter approach (Sheth-Tormen) for early dark energy. Our calculations demonstrate that with the correct δc\delta_c the accuracy of this approach is restored. We discuss the significance of this result for the halo mass function and examine what dark energy physics would be needed to cause significant change in δc\delta_c, and the observational signatures this would leave.Comment: 5 pages, 2 figures. Accepted for MNRAS Letter

    Force distribution in a scalar model for non-cohesive granular material

    Full text link
    We study a scalar lattice model for inter-grain forces in static, non-cohesive, granular materials, obtaining two primary results. (i) The applied stress as a function of overall strain shows a power law dependence with a nontrivial exponent, which moreover varies with system geometry. (ii) Probability distributions for forces on individual grains appear Gaussian at all stages of compression, showing no evidence of exponential tails. With regard to both results, we identify correlations responsible for deviations from previously suggested theories.Comment: 16 pages, 9 figures, Submitted to PR

    Interactions Between Moderate- and Long-Period Giant Planets: Scattering Experiments for Systems in Isolation and with Stellar Flybys

    Full text link
    The chance that a planetary system will interact with another member of its host star's nascent cluster would be greatly increased if gas giant planets form in situ on wide orbits. In this paper, we explore the outcomes of planet-planet scattering for a distribution of multiplanet systems that all have one of the planets on an initial orbit of 100 AU. The scattering experiments are run with and without stellar flybys. We convolve the outcomes with distributions for protoplanetary disk and stellar cluster sizes to generalize the results where possible. We find that the frequencies of large mutual inclinations and high eccentricities are sensitive to the number of planets in a system, but not strongly to stellar flybys. However, flybys do play a role in changing the low and moderate portions of the mutual inclination distributions, and erase dynamically cold initial conditions on average. Wide-orbit planets can be mixed throughout the planetary system, and in some cases, can potentially become hot Jupiters, which we demonstrate using scattering experiments that include a tidal damping model. If planets form on wide orbits in situ, then there will be discernible differences in the proper motion distributions of a sample of wide-orbit planets compared with a pure scattering formation mechanism. Stellar flybys can enhance the frequency of ejections in planetary systems, but auto-ionization is likely to remain the dominant source of free-floating planets.Comment: Accepted for publication by Ap

    The Transit Light Curve Project. XII. Six Transits of the Exoplanet XO-2b

    Full text link
    We present photometry of six transits of the exoplanet XO-2b. By combining the light-curve analysis with theoretical isochrones to determine the stellar properties, we find the planetary radius to be 0.996 +0.031/-0.018 rjup and the planetary mass to be 0.565 +/- 0.054 mjup. These results are consistent with those reported previously, and are also consistent with theoretical models for gas giant planets. The mid-transit times are accurate to within 1 min and are consistent with a constant period. However, the period we derive differs by 2.5 sigma from the previously published period. More data are needed to tell whether the period is actually variable (as it would be in the presence of an additional body) or if the timing errors have been underestimated.Comment: Accepted for publication in AJ. 20 pages, 3 tables, 4 figure
    • …
    corecore