7 research outputs found
Recommended from our members
Microstructural brain tissue changes contribute to cognitive and mood deficits in adults with type 2 diabetes mellitus.
Type 2 diabetes mellitus (T2DM) patients show brain tissue changes in mood and cognitive regulatory sites, but the nature and extent of tissue injury and their associations with symptoms are unclear. Our aim was to examine brain tissue damage in T2DM over controls using mean diffusivity (MD) computed from diffusion tensor imaging (DTI), and assess correlations with mood and cognitive symptoms in T2DM. We collected DTI series (MRI), mood, and cognitive data, from 169 subjects (68 T2DM and 101 controls). Whole-brain MD-maps were calculated, normalized, smoothed, and compared between groups, as well as correlated with mood and cognition scores in T2DM subjects. Type 2 diabetes patients showed altered cognitive and mood functions over control subjects. Multiple brain sites in T2DM patients showed elevated MD values, indicating chronic tissue changes, including the cerebellum, insula, and frontal and prefrontal cortices, cingulate, and lingual gyrus. Associations between MD values and mood and cognition scores appeared in brain sites mediating these functions. Type 2 diabetes patients show predominantly chronic brain tissue changes in areas mediating mood and cognition functions, and tissue changes from those regions correlate with mood and cognitive symptoms suggesting that the microstructural brain changes may account for the observed functional deficits
Recommended from our members
Regional Brain Gray Matter Changes in Patients with Type 2 Diabetes Mellitus.
Patients with Type 2 diabetes mellitus (T2DM) show cognitive and mood impairment, indicating potential for brain injury in regions that control these functions. However, brain tissue integrity in cognition, anxiety, and depression regulatory sites, and their associations with these functional deficits in T2DM subjects remain unclear. We examined gray matter (GM) changes in 34 T2DM and 88 control subjects using high-resolution T1-weighted images, collected from a 3.0-Tesla magnetic resonance imaging scanner, and assessed anxiety [Beck Anxiety Inventory], depressive symptoms [Beck Depression Inventory-II], and cognition [Montreal Cognitive Assessment]. We also investigated relationships between GM status of cognitive and mood control sites and these scores in T2DM. Significantly increased anxiety (p = 0.003) and depression (p = 0.001), and reduced cognition (p = 0.002) appeared in T2DM over controls. Decreased GM volumes appeared in several regions in T2DM patients, including the prefrontal, hippocampus, amygdala, insular, cingulate, cerebellum, caudate, basal-forebrain, and thalamus areas (p < 0.01). GM volumes were significantly associated with anxiety (r = -0.456,p = 0.009), depression (r = -0.465,p = 0.01), and cognition (r = 0.455,p = 0.009) scores in regions associated with those regulations (prefrontal cortices, hippocampus, para hippocampus, amygdala, insula, cingulate, caudate, thalamus, and cerebellum) in T2DM patients. Patients with T2DM show brain damage in regions that are involved in cognition, anxiety, and depression control, and these tissue alterations are associated with functional deficits. The findings indicate that mood and cognitive deficits in T2DM patients has brain structural basis in the condition
Recommended from our members
Regional Brain Gray Matter Changes in Patients with Type 2 Diabetes Mellitus.
Patients with Type 2 diabetes mellitus (T2DM) show cognitive and mood impairment, indicating potential for brain injury in regions that control these functions. However, brain tissue integrity in cognition, anxiety, and depression regulatory sites, and their associations with these functional deficits in T2DM subjects remain unclear. We examined gray matter (GM) changes in 34 T2DM and 88 control subjects using high-resolution T1-weighted images, collected from a 3.0-Tesla magnetic resonance imaging scanner, and assessed anxiety [Beck Anxiety Inventory], depressive symptoms [Beck Depression Inventory-II], and cognition [Montreal Cognitive Assessment]. We also investigated relationships between GM status of cognitive and mood control sites and these scores in T2DM. Significantly increased anxiety (p = 0.003) and depression (p = 0.001), and reduced cognition (p = 0.002) appeared in T2DM over controls. Decreased GM volumes appeared in several regions in T2DM patients, including the prefrontal, hippocampus, amygdala, insular, cingulate, cerebellum, caudate, basal-forebrain, and thalamus areas (p < 0.01). GM volumes were significantly associated with anxiety (r = -0.456,p = 0.009), depression (r = -0.465,p = 0.01), and cognition (r = 0.455,p = 0.009) scores in regions associated with those regulations (prefrontal cortices, hippocampus, para hippocampus, amygdala, insula, cingulate, caudate, thalamus, and cerebellum) in T2DM patients. Patients with T2DM show brain damage in regions that are involved in cognition, anxiety, and depression control, and these tissue alterations are associated with functional deficits. The findings indicate that mood and cognitive deficits in T2DM patients has brain structural basis in the condition