1,322 research outputs found

    1-loop matching and NNLL resummation for all partonic 2 to 2 processes in QCD

    Get PDF
    The Wilson Coefficients for all 4-parton operators which arise in matching QCD to Soft-Collinear Effective Theory (SCET) are computed at 1-loop. Any dijet observable calculated in SCET beyond leading order will require these results. The Wilson coefficients are separated by spin and color, although most applications will involve only the spin-averaged hard functions. The anomalous dimensions for the Wilson coefficients are given to 2-loop order, and the renormalization group equations are solved explicitly. This will allow for analytical resummation of dijet observables to next-to-next-to-leading logarithmic accuracy. For each channel, there is a natural basis in which the evolution is diagonal in color space. The same basis also diagonalizes the color evolution for the soft function. Even though soft functions required for SCET calculations are observable dependent, it is shown that their renormalization group evolution is almost completely determined by a universal structure. With these results, it will be possible to calculate hadronic event shapes or other dijet observables to next-to-leading order with next-to-next-to-leading log resummation.Comment: 28 pages, 5 tables; v2: typo corrected in Eq. (56

    Jet Charge at the LHC

    Get PDF
    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the Standard Model and for characterizing potential beyond-the-Standard-Model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pile-up, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as Standard Model tests, such as jet charge in dijet events or in hadronically-decaying W bosons in t-tbar events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multi-hadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte-Carlo fragmentation models.Comment: 5 pages, 6 figures; v2 published versio

    Tensors Mesons in AdS/QCD

    Full text link
    We explore tensor mesons in AdS/QCD focusing on f2 (1270), the lightest spin-two resonance in QCD. We find that the f2 mass and the partial width for f2 -> gamma gamma are in very good agreement with data. In fact, the dimensionless ratio of these two quantities comes out within the current experimental bound. The result for this ratio depends only on Nc and Nf, and the quark and glueball content of the operator responsible for the f2; more importantly, it does not depend on chiral symmetry breaking and so is both independent of much of the arbitrariness of AdS/QCD and completely out of reach of chiral perturbation theory. For comparison, we also explore f2 -> pi pi, which because of its sensitivity to the UV corrections has much more uncertainty. We also calculate the masses of the higher spin resonances on the Regge trajectory of the f2, and find they compare favorably with experiment.Comment: 21 pages, 1 figure; Li's correcte

    Discretizing Gravity in Warped Spacetime

    Full text link
    We investigate the discretized version of the compact Randall-Sundrum model. By studying the mass eigenstates of the lattice theory, we demonstrate that for warped space, unlike for flat space, the strong coupling scale does not depend on the IR scale and lattice size. However, strong coupling does prevent us from taking the continuum limit of the lattice theory. Nonetheless, the lattice theory works in the manifestly holographic regime and successfully reproduces the most significant features of the warped theory. It is even in some respects better than the KK theory, which must be carefully regulated to obtain the correct physical results. Because it is easier to construct lattice theories than to find exact solutions to GR, we expect lattice gravity to be a useful tool for exploring field theory in curved space.Comment: 17 pages, 4 figures; references adde

    Deciphering top flavor violation at the LHC with B factories

    Get PDF
    The LHC will have unprecedented sensitivity to flavor-changing neutral current (FCNC) top quark decays, whose observation would be a clear sign of physics beyond the standard model. Although many details of top flavor violation are model dependent, the standard model gauge symmetries relate top FCNCs to other processes, which are strongly constrained by existing data. We study these constraints in a model independent way, using a low energy effective theory from which the new physics is integrated out. We consider the most important operators which contribute to top FCNCs and analyze the current constraints on them. We find that the data rule out top FCNCs at a level observable at the LHC due to most of the operators comprising left-handed first or second generation quark fields, while there remains a substantial window for top decays mediated by operators with right-handed charm or up quarks. If FCNC top decays are observed at the LHC, such an analysis may help decipher the underlying physics.Comment: 17 pages, 5 figures; some typos correcte

    Massive Supergravity and Deconstruction

    Full text link
    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various quantum effects which generate non-local operators in theory space. As an example, we show that the single massive supergravity multiplet in a 2-site model can serve the function of an extra dimension in anomaly mediation.Comment: 24 pages, 2 figures, some color. Typos fixed and refs added in v
    • …
    corecore