193 research outputs found

    Negotiated Rulemaking: Involving Citizens in Public Decisions

    Get PDF
    Negotiated Rulemaking: Involving Citizens in Public Decision

    Designing Dispute Resolution Systems for Water Policy and Management

    Get PDF
    34 pages. Contains references

    Designing Dispute Resolution Systems for Water Policy and Management

    Get PDF
    34 pages. Contains references

    The Protection of Instream Flows in Montana: A Legal-Institutional Perspective

    Get PDF
    42 pages. Contains references

    A Sacred Responsibility: Governing the Use of Water and Related Resources in the International Columbia Basin Through the Prism of Tribes and First Nations

    Get PDF
    In the fall of 2012, leaders from Columbia Basin First Nations and tribes participated, along with about 150 other people, in the 4th transboundary symposium convened by the Universities Consortium on Columbia River Governance. Gathered on the shores of Flathead Lake in Polson, Montana, the participants explored the interests, rights, roles, and responsibilities of indigenous people in the international Columbia River Basin. This symposium generated two notable outcomes: first, The Columbia River Basin: A Sense of the Future—a synthesis of interests and concerns with regard to the future of the transboundary river basin as captured by the Universities Consortium during four symposia and related research initiatives; and second, a commitment from indigenous people to continue exploring their role in the governance of the international Columbia Basin. Following the symposium, members of the Universities Consortium continued to work with the Columbia Basin tribes and First Nations to frame an appropriate set of objectives to guide this applied research and report. After an exchange of memorandum and the creation of a steering committee, the Steering Committee agreed to a number of objectives

    The Protection of Instream Flows in Montana: A Legal-Institutional Perspective

    Get PDF
    42 pages. Contains references

    Brain Region-Specific nAChR and Associated Protein Abundance Alterations Following Chronic Nicotine and/or Menthol Exposure

    Get PDF
    The identification of biomarkers that are altered following nicotine/tobacco exposure can facilitate the investigation of tobacco-related diseases. Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian central and peripheral nervous systems and the neuromuscular junction. Neuronal nAChR subunits (11) have been identified in mammals (α2-7, α9-10, β2-4). We examined changes in β2 nAChR subunit protein levels after chronic nicotine, (±)-menthol, or nicotine co-administered with (±)-menthol in nine murine brain regions. Our investigation of β2 nAChR subunit level changes identified the hypothalamus as a novel region of interest for menthol exposure that demonstrated increased β2 nAChR levels after (±)-menthol plus nicotine exposure compared to nicotine exposure alone. Using mass spectrometry, we further characterized changes in membrane protein abundance profiles in the hypothalamus to identify potential biomarkers of (±)-menthol plus nicotine exposure and proteins that may contribute to the elevated β2 nAChR subunit levels. In the hypothalamus, 272 membrane proteins were identified with altered abundances after chronic nicotine plus menthol exposure with respect to chronic nicotine exposure without menthol. A comprehensive investigation of changes in nAChR and non-nAChR protein expression resulting from (±)-menthol plus nicotine in the brain may establish biomarkers to better understand the effects of these drugs on addiction and addiction-related diseases

    Brain Region-Specific nAChR and Associated Protein Abundance Alterations Following Chronic Nicotine and/or Menthol Exposure

    Get PDF
    The identification of biomarkers that are altered following nicotine/tobacco exposure can facilitate the investigation of tobacco-related diseases. Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian central and peripheral nervous systems and the neuromuscular junction. Neuronal nAChR subunits (11) have been identified in mammals (α2-7, α9-10, β2-4). We examined changes in β2 nAChR subunit protein levels after chronic nicotine, (±)-menthol, or nicotine co-administered with (±)-menthol in nine murine brain regions. Our investigation of β2 nAChR subunit level changes identified the hypothalamus as a novel region of interest for menthol exposure that demonstrated increased β2 nAChR levels after (±)-menthol plus nicotine exposure compared to nicotine exposure alone. Using mass spectrometry, we further characterized changes in membrane protein abundance profiles in the hypothalamus to identify potential biomarkers of (±)-menthol plus nicotine exposure and proteins that may contribute to the elevated β2 nAChR subunit levels. In the hypothalamus, 272 membrane proteins were identified with altered abundances after chronic nicotine plus menthol exposure with respect to chronic nicotine exposure without menthol. A comprehensive investigation of changes in nAChR and non-nAChR protein expression resulting from (±)-menthol plus nicotine in the brain may establish biomarkers to better understand the effects of these drugs on addiction and addiction-related diseases

    Diet-driven mercury contamination is associated with polar bear gut microbiota

    Get PDF
    7openInternationalInternational coauthor/editorThe gut microbiota may modulate the disposition and toxicity of environmental contaminants within a host but, conversely, contaminants may also impact gut bacteria. Such contaminant-gut microbial connections, which could lead to alteration of host health, remain poorly known and are rarely studied in free-ranging wildlife. The polar bear (Ursus maritimus) is a long-lived, wide-ranging apex predator that feeds on a variety of high trophic position seal and cetacean species and, as such, is exposed to among the highest levels of biomagnifying contaminants of all Arctic species. Here, we investigate associations between mercury (THg; a key Arctic contaminant), diet, and the diversity and composition of the gut microbiota of polar bears inhabiting the southern Beaufort Sea, while accounting for host sex, age class and body condition. Bacterial diversity was negatively associated with seal consumption and mercury, a pattern seen for both Shannon and Inverse Simpson alpha diversity indices (adjusted R2 = 0.35, F1,18 = 8.00, P = 0.013 and adjusted R2 = 0.26, F1,18 = 6.04, P = 0.027, respectively). No association was found with sex, age class or body condition of polar bears. Bacteria known to either be involved in THg methylation or considered to be highly contaminant resistant, including Lactobacillales, Bacillales and Aeromonadales, were significantly more abundant in individuals that had higher THg concentrations. Conversely, individuals with higher THg concentrations showed a significantly lower abundance of Bacteroidales, a bacterial order that typically plays an important role in supporting host immune function by stimulating intraepithelial lymphocytes within the epithelial barrier. These associations between diet-acquired mercury and microbiota illustrate a potentially overlooked outcome of mercury accumulation in polar bears.openWatson, S.; McKinney, M.A.; Pindo, M.; Bull, M.; Atwood, T.C.; Hauffe, H.C.; Perkins, S.E.Watson, S.; Mckinney, M.A.; Pindo, M.; Bull, M.; Atwood, T.C.; Hauffe, H.C.; Perkins, S.E
    • …
    corecore