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Abstract

The identification of biomarkers that are altered following nicotine/tobacco exposure can facilitate 

the investigation of tobacco-related diseases. Nicotinic acetylcholine receptors (nAChRs) are 

pentameric cation channels expressed in the mammalian central and peripheral nervous systems 

and the neuromuscular junction. Neuronal nAChR subunits (11) have been identified in mammals 

(α2–7, α9–10, β2–4). We examined changes in β2 nAChR subunit protein levels after chronic 

nicotine, (±)-menthol, or nicotine co-administered with (±)-menthol in nine murine brain regions. 

Our investigation of β2 nAChR subunit level changes identified the hypothalamus as a novel 

region of interest for menthol exposure that demonstrated increased β2 nAChR levels after (±)-

menthol plus nicotine exposure compared to nicotine exposure alone. Using mass spectrometry, 

we further characterized changes in membrane protein abundance profiles in the hypothalamus to 

identify potential biomarkers of (±)-menthol plus nicotine exposure and proteins that may 

contribute to the elevated β2 nAChR subunit levels. In the hypothalamus, 272 membrane proteins 

were identified with altered abundances after chronic nicotine plus menthol exposure with respect 

to chronic nicotine exposure without menthol. A comprehensive investigation of changes in 
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nAChR and non-nAChR protein expression resulting from (±)-menthol plus nicotine in the brain 

may establish biomarkers to better understand the effects of these drugs on addiction and 

addiction-related diseases.
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INTRODUCTION

Chronic exposure to nicotine and other tobacco product additives alters protein levels that 

may contribute to tobacco-related diseases. A key requisite in defining the effects of tobacco 

products and their additives is the identification of markers of exposure. Nicotine, the 

addictive compound in tobacco products, binds to and activates nicotinic acetylcholine 

receptors (nAChRs). nAChRs are pentameric cation channels expressed in the mammalian 

central (CNS) and peripheral (PNS) nervous systems as well as in skeletal muscle. Neuronal 

nAChR subunits (11) have been identified in mammals (α2–7, α9–10, β2–4), and the most 

prevalent mammalian CNS nAChRs contain α4β2, α3β4, and α7 subunits.1

In 1985, reports first showed that some nAChRs increase in number and in sensitivity to 

nicotine during chronic nicotine exposure.2,3 This upregulation of nAChRs following 

nicotine/tobacco exposure displays selectivity regarding brain region, neuron type, 

somatodendritic versus axonal regions, and nAChR subtype.4–8 A key concept is that 

upregulation can occur due to post-translational steps. Through “inside-out pharmacology”, 

nicotine can act as a pharmacological chaperone to facilitate trafficking of nascent nAChRs 

in the endoplasmic reticulum (ER) and enhance nAChR levels on the plasma membrane.9 

Several groups are pursuing the hypothesis that upregulation is both necessary and sufficient 

for the early stages of nicotine dependence. Therefore, the quantification of changes in 

protein levels (e.g., nAChR subunits) has the potential to become a mechanistically revealing 

marker for chronic nicotine/tobacco exposure.

Menthol is a common flavoring found in tobacco products that are used by a third of all 

smokers.10 The number of known protein biomarkers for exposure to nicotine/tobacco 

products, as well as product additives such as menthol, is limited. Protein markers of 

nicotine exposure, such as nAChR levels, are useful for several reasons. First, although 
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small-molecule markers for nicotine exposure, such as the major nicotine metabolite 

cotinine, are useful for tracking tobacco product/nicotine exposure, they do not offer insight 

into proteomic changes that may contribute to tobacco-related diseases. Second, we can gain 

insight into the biological response to nicotine exposure by investigating altered levels 

(increases and/or decreases) of proteins associated with various functions or processes after 

chronic nicotine exposure. The identification of protein changes in key brain regions linked 

to addiction may be of interest for a better understanding of addiction or for the 

identification of therapeutic targets.

This study reports on the combined use of immunoblotting and mass spectrometry to 

characterize changes in protein levels in response to chronic nicotine, (±)-menthol, and (±)-

menthol plus nicotine in specific brain regions (Figure 1). We first established changes in 

nAChR subunit levels in response to chronic nicotine, (±)-menthol, and (±)-menthol plus 

nicotine using immunoblotting. We then characterized changes in total membrane-bound 

protein levels in the hypothalamus using mass spectrometry. Together, these approaches 

evaluated nAChR subunit expression as a biomarker of chronic nicotine, (±)-menthol, and 

(±)-menthol plus nicotine exposure in specific brain regions and identified a collection of 

non-nAChR protein markers of chronic nicotine and (±)-menthol plus nicotine exposure in 

the hypothalamus.

The goal of this work was to identify potential nAChR (e.g., β2 nAChR subunit levels) and 

non-nAChR protein biomarkers of interest following chronic nicotine, (±)-menthol, and (±)-

menthol plus nicotine exposure. Proteins of interest are those that have altered expression in 

response to chronic nicotine exposure versus vehicle as well as chronic (±)-menthol co-

administered with nicotine versus nicotine exposure alone. The identified biomarkers of 

exposure reported here are potentially beneficial for monitoring both mentholated and 

nonmentholated tobacco product use and may help identify possible effects that menthol 

itself elicits on protein expression.

METHODS

Drug Administration Using Osmotic Minipumps

All procedures were conducted in accordance with National Institutes of Health guidelines 

for care and use of animals, and protocols were approved by the Institutional Animal Care 

and Use Committee at the California Institute of Technology (protocol 1386–13G). Male 

C57/Bl6 mice 3–6 months of age were used. Racemic menthol, i.e., (±)-menthol, is a 50/50 

mixture of (+)-menthol and (−)-menthol stereoisomers. The selected methods of nicotine, 

(±)-menthol, and (±)-menthol plus nicotine delivery and dose were established and described 

previously.11,12 In brief, osmotic minipumps (Alzet) were implanted under the skin for 12 

days to deliver vehicle (60% ethanol, 40% water), nicotine [2 mg/(kg h)], (±)-menthol [2 

mg/(kg h)], or (±)-menthol plus nicotine [both 2 mg/(kg h)].

Mouse Brain Tissue Collection and Dissection

Brains of male C57Bl/6 wild-type, α4 nAChR knockout, or β2 nAChR knockout mice were 

isolated and immediately dissected on ice. For brain region-specific analyses, brains were 
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serially dissected to isolate specific brain regions. All tissues were frozen at −80°C 

immediately after dissection.

Mouse Brain Membrane Protein Solubilization

Dissected mouse brain regions were homogenized in 50 mM NaCl, 50 mM NaH2PO4, 2 mM 

ethylenediaminetetraacetic acid (EDTA), 2 mM ethylene glycol-bis(β-aminoethyl ether)-

N,N,N′,N′-tetraacetic acid (EGTA), pH 7.4, with 30 strokes of a Potter–Elvehjem glass 

homogenizer or disposable polypropylene pestles on ice. Membrane fragments were isolated 

following centrifugation at 21 130g for 10 min at 4 °C. Membrane pellets were then 

homogenized in the previous buffer with the addition of 2% Triton X-100 with 40 strokes of 

a Potter–Elvehjem glass homogenizer or disposable polypropylene pestles and incubated for 

3 h at 4 °C with agitation to solubilize membrane-bound proteins. Following second 

centrifugation at 21 130g for 10 min at 4 °C, the solubilized membrane fraction was 

recovered in the supernatant. All buffers used to isolate the solubilized membrane fraction 

were supplemented with protease inhibitors (Cell Signaling Technology, 

www.cellsignal.com). The protein content of solubilized membrane fractions was 

determined using a bicinchoninic assay (Pierce Biotechnology, www.thermofisher.com).

Immunoblotting

Detergent-solubilized membrane preparations from each dissected brain region were 

analyzed using immunoblots. Samples were incubated at 95 °C for 5 min in 1× Laemmli 

sample buffer and 355 nM β-mercaptoethanol (Bio-Rad, Hercules, CA, www.bio-rad.com) 

to reduce disulfide bonds. The pH of each sample was adjusted with 1 M Tris base and 

alkylated using 100 mM iodoacetamide at room temperature for 1 h in the dark. Proteins 

were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (3 μg protein 

per lane) and transferred to Immun-Blot low fluorescence poly(vinylidene difluoride) 

membranes (Bio-Rad). For ndufa1 immunoblots, membranes were incubated with REVERT 

(Li-Cor, Lincoln, NE, www.licor.com) total protein stain according to the manufacturer’s 

protocol prior to blocking. Membranes were blocked using Odyssey Tris-buffered saline 

(TBS) blocking buffer (Li-Cor) for 1 h at room temperature (20–25 °C). Membranes were 

incubated with anti-β2 nAChR subunit antibodies (1:100, SC1449, Santa Cruz, Dallas, TX, 

www.scbt.com) and anti-glyceraldehyde 3-phosphate dehydrogenase (anti-GAPDH) 

antibodies (1:1000, Ab9485, Abcam, Cambridge, U.K., www.abcam.com) or antindufa1 

antibodies (1:400, Ab131423, Abcam). All antibodies were diluted in Odyssey TBS 

blocking buffer supplemented with 0.1% Tween-20 (“antibody buffer”) overnight at 4 °C. 

After washing, the membrane was incubated with anti-goat secondary antibodies (1:5 000, 

926–68074, Li-Cor) and anti-rabbit secondary antibodies (1:10 000, 926–32213, Li-Cor) in 

antibody buffer. The membrane was then washed, and targeted proteins were visualized 

using an Odyssey scanner (Li-Cor).

Immunoblotting (Menthol alone Experiments Only)

For menthol alone experiments, immunoblotting was performed as described above with the 

following differences. Per lane, 6 μg of solubilized protein was loaded rather than 3 μg. For 

blocking, 5% milk in TBS was used. Anti-β2 nAChR (1:100, SC1449, Santa Cruz) and anti-

GAPDH antibodies (1:2500, Ab9485, Abcam) were diluted in TBS plus 3% milk and 0.1% 
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Tween-20 buffer overnight at 4 °C. After primary incubation, membranes were washed and 

incubated with anti-goat secondary antibodies (1:5000, A21084, ThermoFisher Scientific, 

San Jose, CA, www.thermofisher.com) and anti-rabbit secondary antibodies (1:15 000, 926–

32213, Li-Cor) diluted in TBS plus 3% milk. Membranes were then washed and visualized, 

as described above.

Immunoblotting Data Analysis

A biological replicate for each drug treatment was measured in triplicate or quadruplicate on 

the same gel. Band-integrated intensities were quantified using the Li-Cor Odyssey 

Application Software (version 3.0, Li-Cor). All β2 immunoreactivity signals were 

normalized to GAPDH. Observed β2 immunoreactivity was quantified as changes in the 

signal from the vehicle. A Student’s t-test (one-tailed, two-sample equal variance) was used 

to statistically confirm changes. For biomarker validation studies, three biological replicate 

samples for each condition were evaluated in duplicate for each gel. Each validation was 

repeated with a second immunoblot with randomized sample location. Band-integrated 

intensities were quantified using the Li-Cor Odyssey Image Studio (version 5.2, Li-Cor). All 

target immunoreactivity signals were normalized to REVERT (Li-Cor) total protein stain. 

Observed ndufa1 immunoreactivity for nicotine alone and (±)-menthol plus nicotine was 

quantified as a change in signal from vehicle. A Student’s t-test (one-tailed, two-sample 

equal variance) was used to identify statistical significance.

Mass Spectrometry Sample Preparation and In-Solution Trypsin Digestion

To prepare for mass spectrometric analysis, 100 μg of protein samples was thawed and 

disulfide/sulfhydryl residues were reduced with 50 mM tris(2-carboxyethyl)phosphine 

(TCEP) in 20 mM N-(2-hydroxyethyl)piperazine-N′-ethanesulfonic acid (HEPES), pH 8.0 

for 1 h at 60 °C. Samples were alkylated with 100 mM iodoacetamide in 20 mM HEPES, pH 

8.0 for 1 h in the dark at room temperature (20–25 °C). Samples were then concentrated and 

purified via precipitation using a ReadyPrep 2-D Cleanup Kit (Bio-Rad). Precipitated 

protein was resuspended in 50 mM ammonium bicarbonate, pH 7.8, supplemented with 100 

ng of trypsin (Promega, Madison, WI, www.promega.com) and digested overnight in-

solution at 37 °C. Following digestion, samples were dried and stored at ‒20 °C until 

analysis.

Tandem Mass Tag (TMT) Labeling

TMT labeling and subsequent mass spectrometry analysis were performed using the SL-

TMT sample process strategy.13 Briefly, TMT reagents (0.8 mg) were dissolved in 

anhydrous acetonitrile (ACN, 40 μL) of which 10 μL was added to the peptides (100 μg) 

along with 30 μL of acetonitrile to achieve a final acetonitrile concentration of 

approximately 30% (v/v). Following incubation at room temperature for 1 h, the reaction 

was quenched with hydroxylamine to a final concentration of 0.3% (v/v). We mixed 5% of 

each sample and analyzed the ratios among reporter ions. As such, we performed a global 

normalization within each TMT by ensuring that the samples were pooled at a 1:1 ratio 

across all channels. The sample was vacuum-centrifuged to near dryness and subjected to 

C18 solid-phase extraction (Sep-Pak, Waters).
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Basic pH Reversed-Phase (BPRP) Fractionation Allowed for Deep Proteome Analysis

A total of 100 μg of the peptide from each of the channels was combined, desalted, and 

fractionated with basic pH reversed-phase (BPRP) chromatography. Following desalting, 

peptides were resuspended in buffer A (10 mM ammonium bicarbonate, 5% ACN, pH 8) 

and loaded onto an Agilent 300Extend C18 column (5 μm particles, 4.6 mm ID, and 220 mm 

in length). The peptide mixture was fractionated with a 60 min linear gradient from 0 to 42% 

buffer B (10 mM ammonium bicarbonate, 90% ACN, pH 8). A total of 96 fractions was 

collected and concatenated so that every 24th fraction was pooled (i.e., samples in wells A1, 

C1, E1, and G1 were combined) and only alternating pooled fractions (a total of 12) were 

analyzed.14

Liquid Chromatography and Tandem Mass Spectrometry (LC–MS/MS)

The samples were reconstituted in 5% acetonitrile and 5% formic acid for LC–MS/MS 

processing. Peptides were separated on a 35 cm long, 100 μm inner diameter microcapillary 

column packed with Accucore (2.6 μm, 150 Å) resin (Thermo Fisher Scientific). For each 

analysis, we loaded 0.5 μg of the sample onto the C18 capillary column using a Proxeon 

NanoLC-1200 UHPLC. Peptides were separated in-line with the mass spectrometer using 

gradients of 6–26% acetonitrile in 0.125% formic acid at a flow rate of ∼500 nL/min. Data 

were collected using the SPS-MS3 method on an Orbitrap Fusion Lumos mass spectrometer 

(Thermo Fisher Scientific). Peptides were separated using a 150 min gradient of 3–25% 

acetonitrile in 0.125% formic acid with a flow rate of 450 nL/min. Each analysis used an 

MS3-based TMT method,15,16 which has been shown to reduce ion interference compared to 

MS2 quantification.17 Prior to starting our analysis, we performed two injections of 

trifluoroethanol to elute any peptides that may have been bound to the analytical column 

from prior injections to limit carry over. The scan sequence began with an MS1 spectrum 

[Orbitrap analysis, resolution 120 000, 350–1400 Th, automatic gain control (AGC) target 5 

× 105, maximum injection time 100 ms]. The top 10 precursors were then selected for the 

MS2/MS3 analysis. MS2 analysis consisted of collision-induced dissociation, quadrupole 

ion trap analysis, automatic gain control (AGC) 1.8 × 104, normalized collision energy 

(NCE) 35, q-value 0.25, maximum injection time 120 ms, and isolation window at 0.7. 

Following the acquisition of each MS2 spectrum, we collected an MS3 spectrum in which 

multiple MS2 fragment ions are captured in the MS3 precursor population using isolation 

waveforms with multiple frequency notches. MS3 precursors were fragmented by HCD and 

analyzed using the Orbitrap (NCE 65, AGC 1.5 × 105, maximum injection time 150 ms, the 

resolution was 50 000 at 400 Th). For MS3 analysis, we used charge state-dependent 

isolation windows: for charge state z = 2, the isolation window was set at 1.3 Th, for z = 3 at 

1 Th, for z = 4 at 0.8 Th, and for z = 5 at 0.7 Th.

Database Searching and TMT Quantification Analysis

Mass spectra were processed using a SEQUEST-based software pipeline.18 Database 

searching included all entries from the Uniprot mouse database (March 20, 2016). This 

database was concatenated with one composed of all protein sequences in the reversed order. 

Searches were performed using a 50 ppm precursor ion tolerance. The product ion tolerance 

was set to 0.9 Da. These wide mass tolerance windows were chosen to maximize sensitivity 
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in conjunction with SEQUEST searches and linear discriminant analysis.18,19 TMT tags on 

lysine residues and peptide N termini (+229.163 Da) and carbamidomethylation of cysteine 

residues (+57.021 Da) were set as static modifications, while oxidation of methionine 

residues (+15.995 Da) was set as a variable modification.

Peptide-spectrum matches (PSMs) were adjusted to a 1% false discovery rate (FDR).20,21 

PSM filtering was performed using a linear discriminant analysis, as described previously,18 

while considering the following parameters: XCorr, ΔCn, missed cleavages, peptide length, 

charge state, and precursor mass accuracy. For TMT-based reporter ion quantitation, we 

extracted the signal-to-noise (S/N) ratio for each TMT channel and found the closest 

matching centroid to the expected mass of the TMT reporter ion. PSMs were identified, 

quantified, and collapsed to a 1% peptide false discovery rate (FDR) and then collapsed 

further to a final protein level FDR of 1%. Moreover, protein assembly was guided by 

principles of parsimony to produce the smallest set of proteins necessary to account for all 

observed peptides.

Peptide intensities were quantified by summing reporter ion counts across all matching 

PSMs so as to give greater weight to more intense ions.16,22 PSMs with poor quality, MS3 

spectra with TMT reporter summed signal-to-noise measurements that were less than 100, or 

with no MS3 spectra were excluded from quantitation. Isolation specificity of ≥0.7 (i.e., 

peptide purity >70%) was required.22

Post-Search Data Analysis

Hypothalami treated with each of the three conditions were analyzed with six biological 

replicates (18 total samples). Samples were split into two groups of nine for TMT labeling 

and analysis, with each group of nine containing three vehicle, three nicotine alone, and 

three (±)-menthol plus nicotine samples. Nicotine and (±)-menthol plus nicotine sample 

TMT signals were normalized to average vehicle TMT signals within each TMT set. 

Statistical significance between vehicle-normalized (±)-menthol plus nicotine and nicotine 

alone values was determined using a Student’s t-test. Search tool for the retrieval of 

interacting genes/proteins (STRING, v. 11, https://string-db.org/) was used to visualize 

hypothalamic proteomes and to illustrate known connections between identified interacting 

proteins.23 All statistically significant protein level differences were evaluated to identify 

protein enrichments for biological processes (GO terms) or pathways (KEGG pathway 

analysis or Reactome pathway analysis). For consideration as a potential biomarker for (±)-

menthol plus nicotine exposure, target proteins were required to be statistically different 

from both vehicle and nicotine alone treatments and to have altered levels in the 97.5th 

percentile or 2.5th percentile per data set (i.e., the largest 5% of observed protein level 

changes) (Table S-1).
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RESULTS AND DISCUSSION

Quantification of β2 Subunit Levels in Selected Mouse Brain Regions after Exposure to 
Chronic Nicotine, (±)-Menthol, or (±)-Menthol Plus Nicotine Exposure

Prior to region-specific analysis of β2 nAChR subunit levels in response to drug treatments, 

the specificity of the β2 antibody used was verified against both α4 and β2 nAChR subunit 

knockout whole brain samples. It has been shown previously that deleting α4 subunit 

expression also diminishes β2 nAChR subunit expression in most brain regions.24 

Immunoreactivity for the β2 antibody in both knockout tissues was <1% of the 

immunoreactivity observed in wild-type whole brain samples (Figures 2A and S-1). 

Following confirmation of antibody specificity, we investigated dissected brain regions for 

changes in β2 immunoreactivity levels after chronic drug treatments.

Initial investigations measured β2 nAChR subunit levels in response to chronic (±)-menthol 

alone in five brain regions: cortex, hypothalamus, midbrain, olfactory tubercles, and 

thalamus. Of the five regions, only one, the hypothalamus, displayed a statistically 

significant (p = 0.03) increase in β2 nAChR subunit levels in response to chronic (±)-

menthol alone (Figure 2B).

Subsequent immunoblotting compared chronic nicotine and (±)-menthol plus nicotine 

exposure versus the vehicle. Several minor modifications were made to the immunoblotting 

protocol to reduce background fluorescence and to improve sensitivity (see Methods 

section). Nine brain regions were investigated: the cerebellum, cortex, hindbrain, 

hippocampus, hypothalamus, midbrain, olfactory tubercles, thalamus, and striatum. All 

investigated regions, except the hypothalamus (10.7% increase in mean, p-value 0.09), 

demonstrated increased β2 nAChR subunit levels in response to nicotine alone (Figure 2C). 

Two brain regions, the cortex and the hypothalamus, were shown to have increased β2 

nAChR subunit levels comparing (±)-menthol plus nicotine to nicotine alone (Figure 2C). 

The hypothalamus, which has not been previously shown to be affected by menthol 

exposure, was selected for further analysis using mass spectrometry to identify proteins that 

could contribute to the elevated β2 nAChR subunit levels as well as potential biomarkers of 

(±)-menthol plus nicotine exposure.

Changes in Membrane-Bound Protein Levels in the Hypothalamus Were Investigated Using 
Mass Spectrometry

Quantifying protein level changes between the drug treatments has the potential to reveal (1) 

possible biomarkers for menthol exposure, (2) proteins contributing to the increase in 

nAChR levels seen following nicotine and (±)-menthol plus nicotine exposure, and (3) 

elucidate the effects of menthol on the hypothalamus specifically. Two proteomes were 

identified in the hypothalamus: a nicotine-altered proteome and a (±)-menthol plus nicotine-

altered proteome (Tables S-2 and S-3). Each of the two proteomes was characterized by 

normalizing tandem mass tag (TMT) values from nicotine and (±)-menthol plus nicotine, 

respectively, to vehicle values. The comparison of vehicle-normalized (±)-menthol plus 

nicotine and nicotine alone signals identified proteins that had upregulated (comparison A), 

downregulated (comparison B), or unaltered levels when menthol was present (Table S-4). 
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Comparison A identified 207 upregulated proteins and comparison B identified 65 

downregulated proteins when (±)-menthol was present (Figure 3C).

We performed network-based analysis using STRING for proteins demonstrating 

significantly altered abundance profiles (refer to Methods section). For each comparison, the 

distribution of percent changes between the compared groups was plotted and the proteins in 

the 97.5th (% increase in levels) percentile and the bottom 2.5th (% decrease in levels) 

percentile, representing the top 5% of protein level changes, were investigated. Proteins 

(2645) were identified in 5/6 or 6/6 replicates in hypothalamic samples chronically treated 

with (±)-menthol plus nicotine compared to nicotine alone. The top 5% of altered protein 

levels of these 2645 proteins identified, included 59 potential biomarkers (Table 1). These 

proteins can be considered as candidates for hypothalamic markers of mentholated cigarette 

smoke exposure [(±)-menthol plus nicotine] compared to traditional cigarette (nicotine 

alone) smoke exposure. One of these potential biomarkers, ndufa1, was further validated 

with immunoblots (Figure 4).

Identifying Changes in nAChR Subunit Levels Adds Important Information beyond mRNA 
Levels, Receptor Levels, and Functional Assessments

Each level of expression (mRNA, protein, assembled receptor) and receptor function may be 

affected differently following chronic nicotine and (±)-menthol plus nicotine exposure. 

Studies that characterized changes (or lack of changes) in mRNA or receptor levels in 

specific brain regions in response to chronic nicotine have been published.5,25 No 

comprehensive (i.e., more than three brain regions) investigation of β2 nAChR subunit levels 

in response to chronic nicotine has been published.4,26

Although several independent groups have reported changes in nAChR levels in one or 

several brain regions, the majority of analyses report changes in β2* nAChR number and not 

changes in β2 nAChR subunit levels. It must not be assumed that subunit levels, assembled 

receptor levels, and surface-expressed receptor levels are regulated in the same manner in 

response to chronic drug treatments. For example, nAChR mRNA levels elevate in 

Alzheimer’s disease, while protein levels decrease. Changes in one level of expression may 

reflect compensation for deficits in another.27 For the first time, we systematically measured 

changes in β2 nAChR subunit levels in response to chronic drug treatments in nine brain 

regions, establishing β2 nAChR subunit levels as a tool for assessing exposure to nicotine 

and (±)-menthol plus nicotine in specific brain regions.

We evaluated if β2 nAChR subunit levels could be used as a biomarker of chronic (±)-

menthol plus nicotine exposure. α4 and β2 nAChR subunits are the most abundant in the 

mammalian central nervous system. Changes in β2 nAChR subunit levels were chosen as a 

potential biomarker over other nAChR subunits (e.g., α4) for the following reasons. The first 

reason for selecting β2 nAChR subunit levels is that β2 may assemble into nAChRs with 

subunits other than α4. Although not abundant in all brain regions, non-α4β2, β2* nAChRs 

(i.e., β2-containing nAChRs) are expressed in the habenula and interpeduncular nucleus.24 

Furthermore, non-α4β2, β2* nAChRs may also be more abundant in peripheral tissues such 

as the blood. Leukocytes have been shown to express “neuronal” nAChRs and blood cells 
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may be an advantageous model for studying nAChRs and biomarkers as the blood is more 

easily obtained than brain tissue.28

A previous study used positron emission tomography scanning with the radioligand 2-[18F] 

fluoro-A-85380 and showed that human smokers of mentholated cigarettes have increased 

levels of β2* nAChRs in the brainstem, cerebellum, and corpus callosum but not the 

prefrontal cortex compared to nonmenthol smokers.29 In mouse models, subunit level 

increases of β2 nAChR subunits in the murine hippocampus, striatum, and prefrontal cortex 

in response to chronic nicotine [administered continuously via osmotic minipump, 2 mg/(kg 

h) for 10 days], chronic (−)-menthol (administered once a day via intraperitoneal injection, 

100 mg/kg for 10 days), or chronic (−)-menthol plus nicotine were previously reported.4 

This study found that α4 levels increased in response to chronic nicotine alone in the 

striatum and increased in response to chronic (−)-menthol alone in the striatum and 

prefrontal cortex. Levels of β2 subunits increased in response to chronic nicotine alone as 

well as in response to chronic (−)-menthol alone in all three regions. Compared to nicotine 

alone, Alsharari et al. showed that chronic (−)-menthol plus nicotine demonstrated increases 

in both α4 and β2 only in the cortex.4 Upregulation of fluorescent α4* and α4α6* nAChRs 

(by knock-in mice expressing nAChRs with fluorescent tags) was observed in ventral 

tegmental area neurons of the midbrain after menthol plus nicotine exposure [both 

administered by osmotic minipump, 2 mg/(kg h) for 10 days or nicotine administered by 

osmotic minipump, 2 mg/(kg h) and menthol administered by alternating 8 day injections, 1 

mg/kg].12 Although previous studies showed that (±)-menthol alone changes surface nAChR 

levels and alters physiology, the published information on total subunit or receptor level 

changes in multiple brain regions is limited.

This Study Is the First To Investigate Exposure of Hypothalamus to Either Nicotine or (±)-
Menthol Plus Nicotine at the Global Proteome Level

We focused on characterizing the effects of nicotine and menthol co-exposure, as this 

condition is the most relevant application of menthol in mentholated cigarettes. In this work, 

we directly paired continuous chronic nicotine and chronic menthol exposure using osmotic 

minipumps and expanded the scope of analysis to investigate nine brain regions for changes 

in β2 subunit levels. We identified the hypothalamus as a novel region of interest for 

menthol exposure that demonstrated increased β2 nAChR levels after (±)-menthol compared 

to vehicle and after (±)-menthol plus nicotine exposure compared to nicotine exposure 

alone. We further characterized protein level changes after chronic exposure to nicotine or 

(±)-menthol plus nicotine in the hypothalamus.

We studied racemic rather than (−)-menthol. Our previous studies demonstrated a functional 

effect of (±)-menthol (administered in the same way as described in this study) on nAChRs 

in dopaminergic neurons of the midbrain.12 Although (−)-menthol is the naturally occurring 

isomer and is thought to be more biologically active (e.g., activation of TRPM8), synthetic 

menthol is often added to tobacco products; the stereochemical composition of menthol in 

tobacco products is neither disclosed nor regulated at present. The method by which menthol 

enhances tobacco product usage is, in part, thought to be through anti-inflammatory and/or 

analgesic effects.30,31 In the lungs and mouth, which both express TRPM8, this is a 
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convincing argument. However, in the brain, where TRPM8 is not highly expressed, the 

specificity of the (−)-menthol on TRPM8 channels is less relevant. Additionally, several 

non-TRPM8 channels, such as TRPA1 and TRPV1, are inhibited rather than activated by 

acute exposure to menthol.32–35

In a previous study demonstrating that menthol exposure alters nAChR function, the 

dopaminergic neurons studied did not express TRPM8, suggesting that the effect of menthol 

was through another target.12 Relevant to the present study, the human hypothalamus does 

not have RNA expression for TRPM8.36 Similarly, there is very little TRPM8 RNA levels 

compared to other transient receptor potential (TRP) channels such as TRPV2 and TRPA1 in 

the rodent hypothalamus.37 These previous studies also demonstrate that TRP channels other 

than TRPM8 are expressed in regions that have shown responses to menthol and may be of 

interest. Several studies do show protein level data in the hypothalamus using 

immunoblotting, but at very low levels in mice without cold stress and none use TRPM8 

knockout controls for their immunoassays.

We identified two TRP channels, TRPM3 and TRPV2, by mass spectrometry in the 

hypothalamus. TRPM8 was not identified in any of the observed proteomes or comparisons. 

Non-TRP channel targets for menthol were also identified, including GABAA receptor 

subunits (Gabra1, Gabrb1, Gabrg2, Gabrg3) and κ opioid receptors (Oprk1). Menthol is a 

positive allosteric modulator of GABAA receptors and a weak agonist of the κ opioid 

receptor (Table 2).38 Of these identified menthol targets, Gabrg2 and TRPV2 had decreased 

levels comparing (±)-menthol plus nicotine compared to nicotine alone. Until the target(s) in 

the brain have been positively identified, it cannot be assumed that the pharmacologically 

more active (−)-menthol at the TRPM8 receptor is relevant. We have previously reported 

that the different stereoisomers have different effects on α4β2 nAChR function.39 Based on 

these prior reports and the findings in this study, future studies should separately investigate 

changes in protein levels after (−)-menthol and (+)-menthol exposure as two relevant 

compounds in tobacco products.

Altered Proteins in the Hypothalamus Have a Potential Influence on Addiction

The hypothalamus participates in several neuroendocrine systems that mediate biological 

processes, such as immune responses and stress. Nicotine activates the hypothalamic–

pituitary–adrenal (HPA) axis.40,50 Nicotine stimulation of the paraventricular nucleus (PVN) 

of the hypothalamus leads to the secretion of corticotropin-releasing hormone (CRH), 

which, in turn, leads to the secretion of adrenocorticotropic hormone (ACTH) from the 

pituitary gland. ACTH release leads to the secretion of cortisol, a key stress hormone.41 

Chronic stress is involved with several addiction-related behaviors, such as increased 

vulnerability to drug use, drug self-administration, and relapse.40

Smokers have elevated cortisol levels compared to non-smokers and have reduced elevations 

of cortisol levels in response to stress.41–43 Changes in cortisol secretion levels after 

smoking cessation may also predict the likelihood of relapse.42 Former smokers with 

persistently elevated cortisol levels after smoking cessation are more likely to relapse when 

presented with stress.44 The connection between the HPA axis, addiction, and smoking 
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cessation makes understanding how chronic nicotine and chronic menthol plus nicotine 

affect the HPA axis of extreme interest for identification of possible therapeutic targets.

Previous reports have used mass spectrometry to describe effects of chronic nicotine 

exposure on protein levels in specific brain regions (e.g., whole brain, cortex, and 

hippocampus) and non-neuronal tissue (e.g., heart, kidney, liver, lung, pancreas, and spleen) 

but not the hypothalamus.45–48 In this study, we identified hypothalamic protein level 

changes and we characterized the pathways and ontologies of altered proteins after chronic 

nicotine or (±)-menthol plus nicotine exposure to give insight into the effects of exposure to 

these drugs.

Before considering the general and hypothalamic specific impact of menthol, we first 

considered nicotine exposure alone. An increase in α4 and β2 nAChR subunits was 

identified using mass spectrometry in the nicotine-altered proteome (Table S-2). No other 

nAChR subunits were detectably changed. Several pathways known to be affected by 

chronic nicotine and to contribute to nAChR expression were enriched in the identified set of 

nicotine-altered proteins (Table 3). Several of these enriched pathways are involved with the 

trafficking of proteins within and between the ER and Golgi, possibly contributing to the 

“inside-out pharmacology” of nicotine.9

In addition to nAChR upregulation, chronic nicotine exposure alters the function of several 

endocrine pathways, including the release of CRH, as noted above. Several pathways can 

regulate CRH release from the hypothalamus and lead to changes in the HPA axis. 

Cholinergic, GABAergic, glutamatergic, and serotonergic signals can all modulate CRH 

release.49 Local hypothalamic release of dopamine from mesocortical and 

tuberoinfundibular pathways can also regulate the HPA axis.51,52 The chronic nicotine 

proteome has enrichments for several neurotransmitter pathways. The enrichment for 

proteins involved with “transmission across chemical synapses” after chronic nicotine, a 

pathway which includes cholinergic (e.g., Chrnb2) and GABAergic (e.g., Gabbr1, Gabrb1, 

and Gabrg2) proteins, was of particular interest.

We Expand upon Previous Studies That Demonstrated a Functional Effect of (±)-Menthol 
on nAChRs in Dopaminergic Neurons of the Midbrain

We investigated five brain regions in our studies of (±)-menthol alone: the cortex, 

hypothalamus, midbrain, olfactory tubercles, and thalamus. Although the cortex, midbrain, 

olfactory tubercles, and thalamus did not exhibit an effect on β2 nAChR subunit levels in 

response to chronic menthol, the hypothalamus did demonstrate an increase in β2 nAChR 

subunit levels. We note that (±)-menthol alone had no effect on β2 subunit levels in the 

cortex, in contrast to previous reports.4 This discrepancy may be due to differences in 

menthol preparations [(−)-menthol versus (±)-menthol] or differences in administration 

(noncontinuous menthol plus continuous nicotine exposure versus continuous menthol plus 

continuous nicotine exposure in our study). Resolution of this discrepancy requires further 

comparisons of menthol administration and dosing.

Nicotine alone elicited an increase in β2 nAChR subunit levels in most brain regions 

investigated but not in the hypothalamus (p-value 0.09). The effects of chronic nicotine have 
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been investigated in the hypothalamus previously using epibatidine binding or 

autoradiography techniques, which measure receptors or surface-expressed subunits, though 

not with β2 immunoblots or solubilized extracts.5,53 The upregulation of assembled nAChRs 

or surface-expressed nAChRs in the hypothalamus may, therefore, reflect a change in protein 

expression after subunit synthesis. Alternatively, the nicotine-elicited increase of β2 nAChR 

subunit levels in the hypothalamus is the smallest observed (10.7%) β2 subunit increase and 

may, therefore, not be a large enough difference to be distinguished from the vehicle-treated 

control using immunoblotting.

Fewer brain regions showed elevated β2 nAChR subunit levels in response to chronic (±)-

menthol plus nicotine compared to nicotine alone. In agreement with Alsharari et al., our 

findings show that the cortex demonstrated an increase in β2 subunit levels when menthol 

was co-administered with nicotine compared to nicotine exposure alone. Interestingly, the 

hypothalamus, which was the only investigated brain region to show a response to (±)-

menthol alone, also demonstrated an increase in β2 nAChR subunit levels with (±)-menthol 

plus nicotine compared to nicotine alone (Figure 2B,C). A recent report determined that 

menthol binds to α4β2 nAChRs within the transmembrane region.39 However, it is unclear 

if this region-specific upregulation in response to chronic menthol or (±)-menthol plus 

nicotine exposure is through direct or indirect interaction of menthol with nAChRs. We 

analyzed the hypothalamic membrane preparations used in the immunoblotting assays using 

mass spectrometry to identify region-specific protein level changes, which could shed light 

on the region-specific nature of the effects of menthol on protein levels in the hypothalamus.

Identifying Protein Level Alterations after Menthol Exposure Facilitates Studies on the 
Impact of Mentholated Cigarettes on the Hypothalamus

Quantifying menthol-sensitive alterations in proteins levels may identify possible 

biomarkers of (±)-menthol plus nicotine exposure and highlight how menthol affects the 

HPA axis, connecting the endocrine system to the study of menthol and addiction.

In this study, we profiled nicotine-altered proteins (nicotine versus vehicle) and (±)-menthol 

plus nicotine proteins [(±)-menthol plus nicotine versus vehicle]. The nicotine-altered 

proteome contains 1115 proteins and the (±)-menthol plus nicotine-altered proteome 

includes 734 proteins. By comparing these two proteomes, we can identify proteins that are 

altered with the administration of menthol. Two comparisons were made when analyzing 

differences between nicotine-altered and (±)-menthol plus nicotine proteins in the 

hypothalamus. The first comparison (comparison A) identified proteins with increased levels 

after (±)-menthol plus nicotine. The second comparison (comparison B) identified proteins 

with decreased levels comparing (±)-menthol plus nicotine to nicotine-exposed values. 

Although an increase in β2 and α4 nAChR subunits was identified in the (±)-menthol plus 

nicotine-altered proteome, the increase was not great enough to meet inclusion criteria for 

comparison A (Table S-4).

Henderson et al. hypothesized that, like nicotine, menthol-mediated upregulation of nAChR 

levels involves cycling of nAChRs between the Golgi and endoplasmic reticulum (ER).12 To 

investigate possible proteins of interest that may be related to nAChR upregulation, we 
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examined changes in levels of membrane proteins in response to (±)-menthol plus nicotine 

versus nicotine exposure.

A total of 207 upregulation proteins were identified when comparing changes observed in 

(±)-menthol plus nicotine samples to nicotine samples (comparison A). STRING analysis of 

comparison A proteins shows enrichments for both membrane trafficking and post-

translational protein modification. More specifically, enriched processes include ER to Golgi 

vesicle-mediated transport, Golgi vesicle transport, post-Golgi vesicle-mediated transport, 

and Golgi to plasma membrane protein transport (Figure 5). These data suggest that menthol 

can increase the protein levels of proteins associated with various stages of nAChR 

expression from levels in mice chronically treated with nicotine. Additionally, the 

enrichment of ER and Golgi protein transport processes are consistent with the Henderson et 

al. 2016 hypothesis that ER to Golgi cycling may be crucial for the effects of menthol on 

nAChR protein levels. Although the nicotine-exposed proteome had enrichments for 

proteins associated with the endocrine system, the (±)-menthol plus nicotine-exposed 

proteome did not.

Comparison B identified proteins that were downregulated comparing (±)-menthol plus 

nicotine to nicotine alone (Table S-4). A total of 65 proteins was identified in comparison B 

with enrichments in pathways that include complex 1 biogenesis as well as the biological 

processes of mitochondrial adenosine 5′-triphosphate (ATP) synthesis-coupled electron 

transport, mitochondrion organization, and mitochondrial transport. Many of these proteins 

had increased levels in the nicotine-exposed proteome but no change in levels in the (±)-

menthol plus nicotine proteome. Nicotine exposure alone has been shown to upregulate or 

downregulate mitochondria electron-transport system proteins in a brain region-specific 

manner as well as reduce reactive oxygen species (ROS) levels, specifically through 

complex I. 54–56 Menthol cigarette smoke extracts also affect ROS generation differently 

than nonmenthol cigarette smoke extracts in lung tissue and menthol exposure, independent 

of TRPM8, elevates ROS generation in cell lines through modulation of Ca2+ release.57,58 

ROS levels also regulate several hypothalamic processes, including energy metabolism, 

body weight, and HPA axis activation.59–61 The menthol-mediated changes in complex I 

protein levels observed in this study could lead to altered ROS levels in the hypothalamus, 

which, in turn, could affect HPA axis signaling, impacting downstream behaviors such as 

stress and addiction.

Seven proteins of mitochondrial electron-transport chain complex I were identified in 

comparison B: mtnd4, ndufa1, ndufa6, ndufc2, ndufs2, ndufs5, and ndufs4. These seven 

proteins also constituted proteins with the greatest changes (all decreases) in levels 

comparing exposure to (±)-menthol plus nicotine and exposure to nicotine alone in either 

comparison A or B (Figure 6). Ndufa1, an accessory subunit of mitochondrial electron-

transport chain complex 1, was selected for validation as a potential biomarker for 

differentiating exposure to (±)-menthol plus nicotine and exposure to nicotine alone. 

Changes in response to chronic nicotine and (±)-menthol plus nicotine compared to nicotine 

for ndufa1 were confirmed by immunoblotting, validating ndufa1 as a potential biomarker 

for menthol exposure (Figure 4).
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Numerous studies show that menthol participates in the initiation of smoking and increased 

difficulty in smoking cessation for mentholated cigarette smokers when compared to 

nonmentholated cigarette smokers.12,30,62,63 The hypotheses for these phenomena have 

included reduction of inflammation in the lungs, effects on nAChR function in reward 

pathways, or modification of the metabolism of nicotine.4 The data presented here introduce 

a novel hypothesis that proteomic changes in the hypothalamus, such as changes in nAChR 

or mitochondrial complex I protein levels, may contribute to the effects of menthol. The 

hypothalamus had increased β2 nAChR subunit levels after both chronic menthol exposure 

compared to the vehicle as well as after chronic (±)-menthol plus nicotine compared to 

nicotine alone.

CONCLUSIONS

Nicotine exposure is a pressing public health issue due to its known roles in tobacco-related 

diseases. Tobacco research would benefit from the identification of proteins with altered 

levels following nicotine exposure and from understanding their functions. Additionally, 

although nicotine is the primary addictive agent in tobacco products, other components, such 

as menthol, may impact levels, location, and function of proteins of interest for the study of 

addiction or tobacco product regulation.64–68

We report, for the first time, a comprehensive investigation of β2 nAChR subunit levels in 

nine murine brain regions following chronic nicotine and (±)-menthol plus nicotine exposure 

and in five brain regions for (±)-menthol alone. The hypothalamus was the only region 

identified that had elevated β2 nAChR subunit levels after chronic (±)-menthol treatment as 

well as elevated β2 nAChR subunit levels with (±)-menthol plus nicotine treatment 

compared to both vehicle and nicotine alone. Understanding how changes in β2 nAChR 

levels occur may, therefore, be useful in understanding how users are affected by exposure to 

(±)-menthol alone (e.g., vaping menthol e-liquids), nicotine (e.g., traditional cigarettes), and 

(±)-menthol plus nicotine (e.g., mentholated cigarettes). We used mass spectrometry to 

characterize further changes in membrane protein levels in the hypothalamus to identify 

potential biomarkers of (±)-menthol plus nicotine exposure as well as identify possible 

proteins that contribute to the elevated β2 nAChR subunit levels. Mitochondrial electron-

transport chain complex I was identified as a potential key target for menthol exposure in the 

hypothalamus. Ndufa1, an accessory subunit of the mitochondrial electron-transport chain 

complex 1, was validated as a potential biomarker for comparing (±)-menthol plus nicotine 

exposure and nicotine exposure. The region-specific protein changes in the hypothalamus, a 

key member of the HPA axis, suggest that menthol could play a role in addiction through 

effects on stress.

The identification of changes in β2 nAChR subunit levels after chronic nicotine, (±)-

menthol, or (±)-menthol plus nicotine exposure will enhance our understanding of the 

biochemical changes that occur in response to exposure to these drugs in different brain 

regions. The proteins identified in the hypothalamus contribute to the understanding of 

biochemical changes involved with stress and addiction as well as identify potential 

therapeutic targets for the management of addiction and smoking cessation.
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Figure 1. 
Experimental design. Wild-type (WT) mice were chronically exposed to vehicle, nicotine, 

(±)-menthol, or (±)-menthol plus nicotine for 10–12 days using osmotic minipumps. Mice 

were euthanized, and their brains removed and dissected into subregions. Solubilized 

membrane protein extracts were prepared for each region. Protein extracts were then queried 

for changes in protein expression in response to drug treatments using immunoblotting (β2 

subunit) or assessing total membrane protein level changes using mass spectrometry.
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Figure 2. 
(A) Immunoblotting confirmation of β2 antibody specificity. To ascertain possible 

nonspecific signals using the selected β2 nAChR antibody, wild-type whole brain samples 

were compared to both β2 and α4 knockout murine whole brain preparations. The band 

identified as β2 (50 kDa) was absent in both α4 and β2 subunit knockouts. The cortex and 

hypothalamus both demonstrated an increase in the β2 signal in (±)-menthol plus nicotine 

(M + N) compared to nicotine alone (N)-treated tissues. Both N + M and N were normalized 

to the vehicle (V)-treated tissues. (B) Effects of chronic (±)-menthol exposure on specific 

brain regions. Only the hypothalamus demonstrated increases in β2 subunit expression when 

treated with (±)-menthol compared to the vehicle. Cortex (n = 8) and hypothalamus (n = 5); 

all other regions (n = 3). (C) Region-specific analysis of β2 nAChR subunit expression 

between nicotine and (±)-menthol plus nicotine treatments. Only the cortex and 

hypothalamus show enhancement in β2 subunit expression when treated with (±) menthol 

plus nicotine compared to nicotine treatment alone. Cortex and midbrain (n = 7 per 

treatment); all other regions (n = 6). Significance was determined using an unpaired 

Student’s t-test. “*”: p ≤ 0.05; “n.s.”: not significant.
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Figure 3. 
Summary of treatment analyses. Vehicle-normalized hypothalamic membrane protein level 

changes following (A) chronic nicotine alone and (B) (±)-menthol plus nicotine were 

compared using mass spectrometry. (C) Comparison A identified which proteins were 

upregulated and comparison B identified which proteins were downregulated in response to 

(±)-menthol plus nicotine exposure versus nicotine alone exposure.
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Figure 4. 
Immunoblot validation of ndufa1, a potential biomarker for menthol exposure. Nine of the 

18 samples [three control, three nicotine-treated, and three (±)-menthol plus nicotine] 

measured by mass spectrometry were selected to validate changes in ndufa1 with 

immunoblots. (A) The observed mass spectrometry signal and (B) immunoblot validation. 

(C) Changes in response to (±)-menthol alone were also investigated. Ndufa1 was validated 

with two immunoblots, each blot measuring three biological replicates for each treatment 

group. Each biological replicate was measured in duplicate in each blot. Control samples 

were pooled and loaded in duplicate.
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Figure 5. 
: STRING analysis of proteins upregulated after (±)-menthol plus nicotine compared to 

nicotine alone. Enrichment for the following biological processes was observed: protein 

transport (red, GO:0015031, 36 proteins, FDR = 1.39 × 10−7); vesicle-mediated transport 

(blue, GO:0016192, 28 proteins, FDR = 7.31 × 10−5); Golgi vesicle transport (purple, 

GO:0048193, 14 proteins, FDR = 3.66 × 10−6); vesicle-mediated transport to the plasma 

membrane (dark green, GO:0098876, 6 proteins, FDR = 0.0033); post-Golgi vesicle-

mediated transport (teal, GO:0006892, 6 proteins, FDR = 0.0064); Golgi to plasma 

membrane protein transport (brown, GO:0043001, 4 proteins, FDR = 0.0085); Golgi to 

plasma membrane transport GO: BP (dark purple, GO:0006893, 5 proteins, FDR = 0.0038). 

Enrichment for Reactome pathways post-translational protein modification (green, 

MMU-597592, 25 proteins, FDR = 0.0217) and membrane trafficking (yellow, 

MMU-199991, 20 proteins, FDR = 9.47 × 10−5) was also observed.
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Figure 6. 
Volcano plot of all proteins identified in (±)-menthol plus nicotine samples. 2645 proteins 

were identified in five of six or six of six (±)-menthol plus nicotine samples. Proteins 

meeting inclusion criteria are shown in red. The seven members of the mitochondrial 

electron-transport chain complex 1 downregulated after (±)-menthol plus nicotine exposure 

are labeled.
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Table 2.

Known Non-nAChR Targets or Potential Targets for Menthol
a

gene symbol log 2 (average N + M/average N) p-value

 Gabra1 −0.06 0.29

 Gabrb1 −0.08 0.23

 Gabrg2 −0.16 0.04

 Gabrg3 0.08 0.30

 Oprk1 −0.03 0.37

 Trpm3 −0.08 0.24

 Trpv2 −0.33 0.02

a
Seven proteins that are affected by menthol exposure or are possible targets for menthol were identified in the hypothalamus. Average vehicle-

normalized log 2 values are shown. Significance was determined using an unpaired Student’s t-test.
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Table 3.

Selected Pathways Enriched in Response to Chronic Nicotine Exposure in the Hypothalamus
a

description database ID no. of proteins FDR

post-translational protein modification reactome MMU-597592 97 0.00077

vesicle-mediated transport reactome MMU-5653656 60 1.25 × 10−05

intra-Golgi and retrograde Golgi-to-ER traffic reactome MMU-6811442 22 0.0092

transport to the Golgi and subsequent modification reactome MMU-948021 20 0.0174

protein processing in the endoplasmic reticulum KEGG mmu04141 20 0.0072

ER to Golgi Anterograde Transport reactome MMU-199977 17 0.0311

clathrin-mediated endocytosis reactome MMU-8856828 15 0.0251

intra-Golgi traffic reactome MMU-6811438 9 0.0106

SNARE interactions in vesicular transport KEGG mmu04130 7 0.0297

a
Selected enriched pathways associated with protein expression. Pathway descriptions were provided by either reactome pathway analysis or Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis database. The pathway ID, number of proteins represented in each pathway, and 
the false discovery rate (FDR) for enrichment are provided.
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