54 research outputs found

    Signalling mechanisms of long term facilitation of breathing with intermittent hypoxia.

    Get PDF
    Intermittent hypoxia causes long-term facilitation (LTF) of respiratory motor nerve activity and ventilation, which manifests as a persistent increase over the normoxic baseline for an hour or more after the acute hypoxic ventilatory response. LTF is likely involved in sleep apnea, but its exact role is uncertain. Previously, LTF was defined as a serotonergic mechanism, but new evidence shows that multiple signaling pathways can elicit LTF. This raises new questions about the interactions between signaling pathways in different time domains of the hypoxic ventilatory response, which can no longer be defined simply in terms of neurochemical mechanisms

    The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade.

    Get PDF
    Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839-1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7-9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a "cocktail" of the GluR antagonists MK-801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15-min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P < 0.05). CSH increased ventilation in hypoxia and acute normoxia. In CSH-conditioned rats, GluR antagonists in the NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats

    Glutamatergic Receptors Modulate Normoxic but Not Hypoxic Ventilation and Metabolism in Naked Mole Rats

    Get PDF
    Naked mole rats (Heterocephalus glaber) are among the most hypoxia-tolerant mammals, but their physiological responses to acute and chronic sustained hypoxia (CSH), and the molecular underpinnings of these responses, are poorly understood. In the present study we evaluated the acute hypoxic ventilatory response and the occurrence of ventilatory acclimatization to hypoxia following CSH exposure (8–10 days in 8% O2) of naked mole rats. We also investigated the role of excitatory glutamatergic signaling in the control of ventilation and metabolism in these conditions. Animals acclimated to normoxia (control) or CSH and then exposed to acute hypoxia (7% O2 for 1 h) exhibited elevated tidal volume (VT), but decreased breathing frequency (fR). As a result, total ventilation (V.E) remained unchanged. Conversely, VT was lower in CSH animals relative to controls, suggesting that there is ventilatory plasticity following acclimatization to chronic hypoxia. Both control and CSH-acclimated naked mole rats exhibited similar 60–65% decreases in O2 consumption rate during acute hypoxia, and as a result their air convection requirement (ACR) increased ∼2.4 to 3-fold. Glutamatergic receptor inhibition decreased fR, V.E, and the rate of O2 consumption in normoxia but did not alter these ventilatory or metabolic responses to acute hypoxia in either the control or CSH groups. Taken together, these findings indicate that ventilatory acclimatization to hypoxia is atypical in naked mole rats, and glutamatergic signaling is not involved in their hypoxic ventilatory or metabolic responses to acute or chronic hypoxia

    Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (<i>Heterocephalus glaber</i>)

    Get PDF
    Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance

    Naked mole-rat brown fat thermogenesis is diminished during hypoxia through a rapid decrease in UCP1

    Get PDF
    Naked mole-rats are among the most hypoxia-tolerant mammals. During hypoxia, their body temperature (Tb) decreases via unknown mechanisms to conserve energy. In small mammals, non-shivering thermogenesis in brown adipose tissue (BAT) is critical to Tb regulation; therefore, we hypothesize that hypoxia decreases naked mole-rat BAT thermogenesis. To test this, we measure changes in Tb during normoxia and hypoxia (7% O2; 1–3 h). We report that interscapular thermogenesis is high in normoxia but ceases during hypoxia, and Tb decreases. Furthermore, in BAT from animals treated in hypoxia, UCP1 and mitochondrial complexes I-V protein expression rapidly decrease, while mitochondria undergo fission, and apoptosis and mitophagy are inhibited. Finally, UCP1 expression decreases in hypoxia in three other social African mole-rat species, but not a solitary species. These findings suggest that the ability to rapidly down-regulate thermogenesis to conserve oxygen in hypoxia may have evolved preferentially in social species.An NSERC Discovery grants, a Canada Research Chair and an University of Ottawa Research Chair. Collection and housing of mole-rats in Africa were funded by a SARChI grant.http://www.nature.com/naturecommunicationsam2022Zoology and Entomolog

    The relationship between hypoxia exposure and circulating cortisol levels in social and solitary African mole-rats: An initial report

    Get PDF
    Hypoxemia from exposure to intermittent and/or acute environmental hypoxia (lower oxygen concentration) is a severe stressor for many animal species. The response to hypoxia of the hypothalamic-pituitary-adrenal axis (HPA-axis), which culminates in the release of glucocorticoids, has been well-studied in hypoxia-intolerant surface-dwelling mammals. Several group-living (social) subterranean species, including most African mole -rats, are hypoxia-tolerant, likely due to regular exposure to intermittent hypoxia in their underground bur-rows. Conversely, solitary mole-rat species, lack many adaptive mechanisms, making them less hypoxia-tolerant than the social genera. To date, the release of glucocorticoids in response to hypoxia has not been measured in hypoxia-tolerant mammalian species. Consequently, this study exposed three social African mole-rat species and two solitary mole-rat species to normoxia, or acute hypoxia and then measured their respective plasma gluco-corticoid (cortisol) concentrations. Social mole-rats had lower plasma cortisol concentrations under normoxia than the solitary genera. Furthermore, individuals of all three of the social mole-rat species exhibited signifi-cantly increased plasma cortisol concentrations after hypoxia, similar to those of hypoxia-intolerant surface -dwelling species. By contrast, individuals of the two solitary species had a reduced plasma cortisol response to acute hypoxia, possibly due to increased plasma cortisol under normoxia. If placed in perspective with other closely related surface-dwelling species, the regular exposure of the social African mole-rats to hypoxia may have reduced the basal levels of the components for the adaptive mechanisms associated with hypoxia exposure, including circulating cortisol levels. Similarly, the influence of body mass on plasma cortisol levels cannot be ignored. This study demonstrates that both hypoxia-tolerant rodents and hypoxia-intolerant terrestrial laboratory-bred rodents may possess similar HPA-axis responses from exposure to hypoxia. Further research is required to confirm the results from this pilot study and to further confirm how the cortisol concentrations may influence responses to hypoxia in African mole-rats

    The naked truth:a comprehensive clarification and classification of current 'myths' in naked mole-rat biology

    Get PDF
    The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions
    • …
    corecore