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A B S T R A C T   

Hypoxemia from exposure to intermittent and/or acute environmental hypoxia (lower oxygen concentration) is a 
severe stressor for many animal species. The response to hypoxia of the hypothalamic–pituitary-adrenal axis 
(HPA-axis), which culminates in the release of glucocorticoids, has been well-studied in hypoxia-intolerant 
surface-dwelling mammals. Several group-living (social) subterranean species, including most African mole- 
rats, are hypoxia-tolerant, likely due to regular exposure to intermittent hypoxia in their underground bur
rows. Conversely, solitary mole-rat species, lack many adaptive mechanisms, making them less hypoxia-tolerant 
than the social genera. To date, the release of glucocorticoids in response to hypoxia has not been measured in 
hypoxia-tolerant mammalian species. Consequently, this study exposed three social African mole-rat species and 
two solitary mole-rat species to normoxia, or acute hypoxia and then measured their respective plasma gluco
corticoid (cortisol) concentrations. Social mole-rats had lower plasma cortisol concentrations under normoxia 
than the solitary genera. Furthermore, individuals of all three of the social mole-rat species exhibited signifi
cantly increased plasma cortisol concentrations after hypoxia, similar to those of hypoxia-intolerant surface- 
dwelling species. By contrast, individuals of the two solitary species had a reduced plasma cortisol response to 
acute hypoxia, possibly due to increased plasma cortisol under normoxia. If placed in perspective with other 
closely related surface-dwelling species, the regular exposure of the social African mole-rats to hypoxia may have 
reduced the basal levels of the components for the adaptive mechanisms associated with hypoxia exposure, 
including circulating cortisol levels. Similarly, the influence of body mass on plasma cortisol levels cannot be 
ignored. This study demonstrates that both hypoxia-tolerant rodents and hypoxia-intolerant terrestrial 
laboratory-bred rodents may possess similar HPA-axis responses from exposure to hypoxia. Further research is 
required to confirm the results from this pilot study and to further confirm how the cortisol concentrations may 
influence responses to hypoxia in African mole-rats.   

1. Introduction 

During stressful conditions, several mechanisms are activated as part 
of homeostatic control, including behavioural, visceral and endocrine 
changes (Arias-Reyes et al., 2021; Zoccal et al., 2007). For example, in 
mammals, the primary endocrine response to stress is the activation of 

the hypothalamic–pituitary-adrenal axis (HPA-axis), which culminates 
in the release of glucocorticoids (cortisol or corticosterone) from the 
adrenal glands into the circulation throughout the body (Herman et al., 
2016). One such stressor is exposure to physiologically demanding at
mospheric conditions, such as intermittent and acute hypoxia (lower 
oxygen concentrations). Typically, surface-dwelling mammals, such as 
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terrestrial laboratory-bred rodents (e.g. Mus musculus and Rattus norve
gicus), belonging to the rodent suborder Myomorpha, rarely experience 
hypoxia, likely only during a temporary cessation of respiratory airflow 
(i.e., Apnea) or due to various pathologies (e.g., COPD) (Bodager et al., 
2014). In comparison, species confined to underground burrows (i.e. 
subterranean mammals) are presumably regularly exposed to chal
lenging atmospheric conditions. Indeed, in the subterranean burrows of 
social species, where numerous animals live within the confined space of 
the nest that is often at depth, and there is poor gas diffusion through the 
surrounding soils, the atmosphere may become intermittently or 
chronically hypoxic and/or hypercapnic (Roper et al., 2001). As a result 
of this exposure, subterranean mammalian species, and particularly 
those that live in groups, may have evolved to be more tolerant to 
hypoxia (so-called hypoxia-tolerant species) than surface-dwelling 
mammals (so-called hypoxia-intolerant species) (Frappell et al., 1992). 

Activation of the HPA-axis and the subsequent release of glucocor
ticoids in response to intermittent and/or acute hypoxia is well docu
mented in hypoxia-intolerant species, with the most common shared 
response being an increase of up to 200% in circulating glucocorticoids 
(Bodager et al., 2014; Bruder et al., 2011, 2008; Chintamaneni et al., 
2013; Guenther et al., 2012; Hwang et al., 2017; Johnson et al., 2013; 
Zoccal et al., 2007). Yet, surprisingly, the HPA-axis response of hypoxia- 
tolerant species to intermittent and/or acute hypoxia has never been 
investigated. 

African mole-rats, belonging to the rodent suborder Hystricomorpha, 
provide a unique rodent model system as they exhibit different degrees 
of sociality, ranging from solitary to eusocial, as well as a range of 
hypoxia tolerances (Bennett and Faulkes, 2000, Ivy et al. 2020). All 
African mole-rat species are exclusively subterranean and thus share 
many similar environmental conditions in their burrows, although these 
conditions vary with group size (Bennett et al., 1988; Bennett and 
Faulkes, 2000; Holtze et al., 2018). As a result, mole-rats, and particu
larly the naked mole-rat (Heterocephalus glaber), which occurs in large 
groups of approximately 80 individuals, exhibit robust adaptations to 
anoxia and hypoxia (Ilacqua et al., 2017; Pamenter et al., 2015; 
Pamenter, 2022; Park et al., 2017). Similarly, several recent studies have 
suggested that other social mole-rat species, such as those of the genus 
Cryptomys (that live in groups of up to 20 individuals (Hart et al. 2021)), 
also have remarkable adaptations to hypoxia, resulting in elevated 
hypoxia tolerance relative to the mole-rat species that live a solitary 
lifestyle (Ivy et al., 2020; Logan et al., 2020). Importantly, solitary mole- 
rat species only pair up briefly during the mating season to court and 
breed, and the offspring subsequently disperse from the natal burrow 
after weaning and are expected not to be exposed to frequent bouts of 
hypoxia thereafter (Bennett and Jarvis, 1988; Hart et al., 2006). How
ever, these solitary species would still experience more frequent hypoxia 
exposure than exclusively terrestrial species. 

In the present study, we aimed to address the dearth of knowledge 
pertaining to the response of the HPA-axis of hypoxia-tolerant subter
ranean mammals to exposure to acute hypoxia. To this end, we exposed 
three social mole-rat species, the naked mole-rat, the common mole-rat 
(Cryptomys hottentotus hottentotus) and the highveld mole-rat (C. h. pre
toriae), as well as two solitary mole-rat species, the Cape dune mole-rat, 
(Bathyergus suillus), and the Cape mole-rat, (Georychus capensis), to 
normoxia or acute hypoxia and measured their circulating plasma 
cortisol (the primary glucocorticoid in African mole-rats (Bennett and 
Faulkes, 2000)) concentrations. 

2. Materials and methods 

(a) Study animals. 
Apart from the naked mole-rats, which came from laboratory-raised 

colonies, all the other mole-rat species were wild-caught in South Africa. 
All study animals were adults, and only non-breeding colony members 
were used for the social mole-rat species. Work with solitary species was 
performed outside their breeding season. Wild-caught animals were in 

captivity for seven to ten days prior to initiating the experimental pro
tocol. All other details on the methods employed are provided in the 
electronic supplementary materials. 

(b) Experimental protocol. 
Animals were randomly assigned to either i) 3 h of normoxia at 18.5 

kPa O2 (wild-caught mole-rats in Pretoria) or 21 kPa O2 (captive-bred 
naked mole-rats in Ottawa) (balance N2; control), or ii) 3 h of hypoxia at 
5 kPa (5% O2) for most species or 7 kPa (7% O2) for Cape dune mole- 
rats. Hypoxia exposures were preceded by a 30 min step at 12 kPa O2 
and were chosen to be just above the minimum tolerable O2 threshold 
that the animals could withstand in preliminary experiments (Ivy et al., 
2020). Following experimentation, animals were immediately euthan
ised by cervical dislocation followed by decapitation (See supplemen
tary material for additional details). Whole blood was collected directly 
from the neck and/or heart using a 3.0 ml syringe with a 25-gauge × 5/ 
8-inch needle. After collection, the blood was transferred into a Vacu
tainer coated with lithium heparin. The blood collection tubes were 
subsequently centrifuged at 3000 rpm for 15 min. Plasma was collected 
and stored at − 20 ◦C for cortisol analysis. 

(c) Plasma cortisol analysis. 
Plasma cortisol concentrations were determined using a commer

cially available coated tube assay kit. The assay was carried out ac
cording to the manufacturer’s protocol. Further details are provided in 
the electronic supplementary material. 

(a) Statistical analysis. 
Each of the five species was analysed separately, owing to the sig

nificant differences between species in the plasma cortisol titres of the 
mole-rats exposed to normoxia (Kruskal-Wallis: H = 17.6, df = 4, p =
0.002, Fig. 1). Normality of the plasma cortisol concentrations for each 
species was determined using Shapiro-Wilk tests, and homogeneity of 
normally distributed dependent variables was confirmed with a Lev
ene’s test. Log-transformation was attempted to normalise all non- 
normally distributed dependent variables. On log transformation, all 
data met the normality assumption; consequently, an independent t-test 
was conducted to compare plasma cortisol concentrations of animals 
exposed to normoxia or acute hypoxia for each species. To confirm the 
above analysis, a generalised linear model, with gamma distributions 
and link-identity function from the lme4 package, was used to analyse 
differences between the five species and treatments (normoxia, hypoxia) 
and the two-way interaction species and treatment. Post-hoc compari
sons of significant interactions were obtained by Tukey’s HSD (honestly 
significant difference) test (See supplementary material for results). All 
statistical analyses were performed in R 3.5.2 (R Development Core 
Team, 2018). The results herein are presented as mean ± standard error. 

3. Results 

The solitary species (106.3 ± 24.9 ng/ml) were observed to possess 
666% higher plasma cortisol concentrations under normoxia than the 
social species (16.0 ± 3.05 ng/ml) (Fig. 1, See supplementary material 
for results). All social mole-rats species exhibited a significant increase 
in plasma cortisol concentrations following acute in vivo hypoxia expo
sure relative to normoxic control animals (Table 1, Fig. 1). Plasma 
cortisol increased by 428 ± 115% in social species exposed to hypoxia 
(naked mole-rat – 266%; common mole-rat – 368%; highveld mole-rat – 
650%, Fig. 1). By contrast, both solitary species had statistically similar 
levels of cortisol concentrations between hypoxia and normoxia 
(Table 1, Fig. 1). Solitary species exhibited an upward trend of plasma 
cortisol under hypoxia (158 ± 16% increase; Cape dune mole-rat – 
142%; Cape mole-rat – 172%), but this increase was much lower than 
the social species. 

4. Discussion 

The study was undertaken to unravel the relationship between 
hypoxia exposure and circulating cortisol levels in social and solitary 
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African mole-rats. Firstly, the findings imply that species of Hys
tricomorpha with smaller body sizes which are historically exposed to a 
high frequency of intermittent hypoxia, the social African mole-rat 
species, may reduce the basal levels of the components of the adaptive 
mechanisms associated with hypoxia exposure, including circulating 
cortisol levels. Secondly, and likely tightly linked to the finding above, 
this study indicates that both hypoxia-tolerant rodents, including one of 
the most hypoxia-tolerant mammals (the naked mole-rat), and hypoxia- 
intolerant terrestrial laboratory-bred rodents, may possess a similar 
HPA-axis response from exposure to hypoxia. 

All social mole-rat species exhibit a significant increase in plasma 
cortisol levels when exposed to acute hypoxia, whereas the solitary 
species do not. Specifically, cortisol increases > 200% in social mole- 
rats, which is similar to previous observations from similarly-treated 
hypoxia-intolerant rodents (Hwang et al., 2017; Zoccal et al., 2007), 
whereas cortisol increases < 200% in the solitary species. 

However, the reduced plasma cortisol response to acute hypoxia in 
solitary African mole-rat species may be due to their increased normoxia 
plasma cortisol titres compared to social species that occur in organised 
families. This study is one of the first to investigate circulating cortisol 
levels in solitary mole-rats, and therefore it was surprising to observe 
this significant difference between circulating cortisol levels of solitary 
and social mole-rats species under normoxia (666% difference). Unfor
tunately, this study did not set out to conclusively investigate the 
possible causes of this difference; however, we have attempted to set out 
possible causes that future studies could use as a starting point to 

investigate this unique pattern. 
Firstly, a link between plasma cortisol levels and metabolic rate in 

mammals has been highlighted; namely, baseline plasma cortisol con
centrations vary with the mass-specific metabolic rate among cortisol- 
dominant mammals (Haase et al., 2016). Haase et al. (2016) sug
gested a linear relationship between plasma cortisol concentrations and 
mass-specific metabolic rate, with mammal species possessing a higher 
mass-specific metabolic rate possessing higher plasma cortisol concen
trations. African mole-rats are renowned for possessing lower mass- 
specific resting metabolic rates than terrestrial-dwelling rodents (Ben
nett and Faulkes, 2000; Ivy et al. 2020; Wallace et al. 2021; Hart et al. 
2022a). As with all mammal species, the heavier species of African mole- 
rats, namely the solitary species, possess a lower mass-specific metabolic 
rate than the lighter species of African mole-rats, namely the social 
species (Šumbera 2019; Ivy et al. 2020; Hart et al. 2022a). However, in 
contrast to Haase et al. (2016) suggestion, the solitary mole-rat species, 
which possess the lowest mass-specific metabolic rate, possessed the 
highest circulating cortisol concentrations. Secondly, Haase et al. (2016) 
also alluded to the link between circulating cortisol concentrations and 
body mass between mammalian species. A positive relationship between 
higher body masses and higher plasma cortisol titre was observed in 
cortisol-dominant mammals (Haase et al., 2016). This trend was 
observed within this study on African mole-rats (see Figure S1); how
ever, as this study only includes five African species, with one species, 
the Cape Dune mole-rat, vastly outweighing the other mole-rat species 
of this study, we hesitate to speculate more on this pattern, however 
further research is warranted to investigate such a trend. Thirdly, 
repeated exposure to a stressful event (a chronic stressor), such as 
intermittent hypoxia, may result in extended periods of high levels of 
circulating glucocorticoids, ultimately resulting in detrimental long- 
term effects, such as reduced immune system strength and reproduc
tive capacity (Bauer, 2005; Hart et al., 2022b). This would be incom
patible with these species thriving in such a natural environment, and as 
such, a reduction in basal cortisol circulation may have been selected to 
counter the possibility of chronically high cortisol levels due to exposure 
to intermittent hypoxia in social African mole-rat species. As such, the 
solitary African mole-rat species, still being exposed to hypoxia but less 
frequently, would possess higher basal cortisol than social species as 
they are at a lower risk of HPA-exhaustion. 

Fig. 1. The plasma cortisol concentration (ng/ml) of 
five African mole-rat species (three social and two 
solitary species) exposed to normoxia or acute hyp
oxia. Insert: Percentage increase (% change) in 
plasma cortisol concentration of mole-rats exposed to 
acute hypoxia compared to those exposed to nor
moxia. BS – Cape dune mole-rat; GC – Cape mole-rat; 
HG – naked mole-rat; CHH – common mole-rat; CHP – 
highveld mole-rat. The results are presented as mean 
± standard error. Asterisks (*) indicate a significant 
difference (p ≤ 0.05).   

Table 1 
Summary of animal numbers used and statistical results of t-test results 
comparing plasma cortisol concentrations in animals exposed to normoxia or 
acute hypoxia.  

Species Sociality n t p 
Normoxia Hypoxia 

Naked mole-rat Social 18 12  3.11  0.005* 
Common mole-rat Social 5 4  6.73  0.005* 
highveld mole-rat Social 4 7  8.12  0.001* 
Cape mole-rat Solitary 5 3  5.24  0.13 
Cape dune mole-rat Solitary 6 3  0.76  0.51 

(*) indicates significant difference from normoxia (p ≤ 0.05). 
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Interestingly, similar patterns between social and solitary African 
mole-rat species have been observed in other biological processes 
relating to hypoxia exposure, including thermogenesis and erythropoi
esis (Cheng et al., 2021; Ivy et al., 2020). For example, social African 
mole-rat species rapidly down-regulate energetically-demanding non- 
shivering thermogenesis through reduced expression of uncoupling 
protein-1 (UCP1)-mediated mitochondrial uncoupling in brown adipose 
tissue (BAT), while upregulating erythropoiesis resulting in increased 
haematocrit and haemoglobin during acute in vivo hypoxia exposure to 
increase oxygen transport (Cheng et al., 2021; Ivy et al., 2020). 
Conversely, the solitary Cape mole-rat does not down-regulate UCP1 in 
BAT in acute hypoxia (Cheng et al., 2021), while both the Cape dune and 
Cape mole-rats do not exhibit changes in haematocrit and haemoglobin 
when exposed to hypoxia (Ivy et al., 2020). Again this may be due to 
increased UCP1 expression, haematocrit, and haemoglobin of solitary 
African mole-rat species under normoxia. As with the plasma cortisol 
results of the current study, basal (under normoxia) levels of UCP1 
expression, haematocrit, and haemoglobin of solitary African mole-rat 
species are higher than those of the social species (Cheng et al., 2021; 
Ivy et al., 2020). This, again, may indicate that selective pressure is 
placed on social African mole-rat species by frequent exposure to 
intermittent hypoxia, which may reduce the basal levels of signalling 
intermediates underlying adaptive mechanisms associated with hypoxia 
exposure. 

Unfortunately, testing this hypothesis is difficult because there are 
no exclusively aboveground African mole-rats species in which, ac
cording to the hypothesis above, we would predict raised cortisol, UCP1, 
haematocrit and haemoglobin levels under normoxia. However, a well- 
studied, social, primarily surface-dwelling (non-fossorial) member of the 
suborder Hystricomorpha may be essential to unlocking this hypothesis. 
Guinea pigs (Cavia aperea), in the suborder Hystricomorpha, are often 
kept as pets while also being a useful model for biomedical research and, 
like African mole-rats, utilise cortisol as their primary glucocorticoid 
(Rystrom et al., 2022). Interestingly, in basal normoxic environments, 
guinea pigs express higher circulating plasma cortisol concentrations 
(Mean: ~690 ng/ml; range: 134–1440 ng/ml) (Rystrom et al., 2022) 
relative to those of all African mole-rats species of this study (Fig. 1). 
Therefore, a pattern may be apparent whereby the normoxia basal 
circulating cortisol concentration is low in Hystricomorpha species 
exposed frequently to intermittent hypoxia, possibly to avoid HPA- 
exhaustion. Unfortunately, there has been no investigation into the 
regulation of the HPA-axis, and ultimately cortisol response, or UCP1 
expression in response to hypoxia in adult guinea pigs, but changes in 
haematocrit and haemoglobin values in response to acute hypoxia have 
been recorded (Docio et al., 2018; Ederstrom et al., 1971; Genzer et al., 
2019; Lechner et al., 1981; Spittler et al., 2021). Interestingly, the nor
moxic baseline and hypoxia-treated haematocrit and haemoglobin 
values of adult guinea pigs are similar to those of solitary African mole- 
rats (Docio et al., 2018; Ederstrom et al., 1971; Genzer et al., 2019; Ivy 
et al., 2020; Lechner et al., 1981; Spittler et al., 2021). This again implies 
that species of Hystricomorpha which are historically exposed to a high 
frequency of intermittent hypoxia, the social African mole-rat species, 
may reduce the basal levels of the components of the adaptive mecha
nisms associated with frequent hypoxia exposure. Guinea pigs have been 
suggested to have a higher tolerance to hypoxic environments than 
laboratory-bred rodents (Gonzalez-Obeso et al., 2017), but this has been 
contested (Lechner et al., 1981); however, they have never been directly 
compared to African mole-rats. However, it must be highlighted that the 
guinea pigs apart of Rystrom et al. (2022) study were heavier than the 
mole-rats species of this study (Figure S2), and as such, we can not 
disqualify the effect of body mass on plasma cortisol levels under nor
moxia. Further work on guinea pigs and the suborder Hystricomorpha 
under hypoxia may provide further insight into this question. 

However, this study’s findings and conclusions must be considered 
through a pilot study’s scope. Therefore, a greater sample size for all 
African mole-rat species is necessary to test these preliminary findings 

robustly. Furthermore, since only plasma cortisol levels were measured, 
we cannot speculate on regulation by receptor expression and/ or af
finity as well as ‘crosstalk’ between different biological processes; 
therefore, it is not possible to conclude how the cortisol concentrations 
may influence responses to hypoxia in African mole-rat. Furthermore, 
from a phylogenetic point of view, similar research on more closely 
related species across a range of body masses, such as those belonging to 
the suborder Hystricomorpha, including guinea pigs, dassie rats (Petro
mus typicus), and the cane rat (Thyronomys) (Smith et al., 2015), are 
needed. 
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