1,212 research outputs found

    Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground-state of motion

    Get PDF
    Using pulsed optical excitation and read-out along with single phonon counting techniques, we measure the transient back-action, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of 11mK. In addition to observing a slow (~740ns) turn-on time for the optical-absorption-induced hot phonon bath, we measure for the 5.6GHz `breathing' acoustic mode of the cavity an initial phonon occupancy as low as 0.021 +- 0.007 (mode temperature = 70mK) and an intrinsic mechanical decay rate of 328 +- 14 Hz (mechanical Q-factor = 1.7x10^7). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.Comment: 16 pages, 6 figure

    Reduction and control of domain spacing by additive inclusion: morphology and orientation effects of glycols on microphase separated PS-b-PEO

    Get PDF
    Cylindrical phase polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer (BCP) was combined with lower molecular weight poly/ethylene glycols at different concentrations and their effect on the microphase separation of BCP thin films were studied. Well-ordered microphase separated, periodic nanostructures were realized using a solvent annealing approach for solution cast thin films. By optimizing solvent exposure time, the nature and concentration of the additives etc. the morphology and orientation of the films can be controlled. The addition of the glycols to PS-b-PEO enables a simple method by which the microdomain spacing of the phase separated BCP can be controlled at dimensions below 50nm. Most interestingly, the additives results in an expected increase in domain spacing (i.e. pitch size) but in some conditions an unexpected reduction in domain spacing. The pitch size achieved by modification is in the range of 16–31nm compared to an unmodified BCP system which exhibits a pitch size of 25nm. The pitch size modification achieved can be explained in terms of chemical structure, solubility parameters, crystallinity and glass transition temperature of the PEO because the additives act as PEO ‘stress cracking agents’ whereas the PS matrix remains chemically unaffected

    Development of a facile block copolymer method for creating hard mask patterns integrated into semiconductor manufacturing

    Get PDF
    Our goal is to develop a facile process to create patterns of inorganic oxides and metals on a substrate that can act as hard masks. These materials should have high etch contrast (compared to silicon) and so allow high-aspect-ratio, high-fidelity pattern transfer whilst being readily integrable in modern semiconductor fabrication (FAB friendly). Here, we show that ultra-small-dimension hard masks can be used to develop large areas of densely packed vertically and horizontally orientated Si nanowire arrays. The inorganic and metal hard masks (Ni, NiO, and ZnO) of different morphologies and dimensions were formed using microphase-separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin films by varying the BCP molecular weight, annealing temperature, and annealing solvent(s). The self-assembled polymer patterns were solvent-processed, and metal ions were included into chosen domains via a selective inclusion method. Inorganic oxide nanopatterns were subsequently developed using standard techniques. High-resolution transmission electron microscopy studies show that high-aspect-ratio pattern transfer could be affected by standard plasma etch techniques. The masking ability of the different materials was compared in order to create the highest quality uniform and smooth sidewall profiles of the Si nanowire arrays. Notably good performance of the metal mask was seen, and this could impact the use of these materials at small dimensions where conventional methods are severely limited

    Optically addressing single rare-earth ions in a nanophotonic cavity

    Get PDF
    We demonstrate optical probing of spectrally resolved single Nd rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations. This could enable optically controlled spin qubits, quantum logic gates, and spin-photon interfaces for future quantum networks

    Fabrication of ordered, large scale, horizontally aligned Si nanowire arrays based on an in-situ hard mask block copolymer approach

    Get PDF
    A simple technique is demonstrated to fabricate horizontal, uniform, and hexagonally arranged Sinanowire arrays with controlled orientation and density at spatially well defined locations on a substrate based on an in situ hard-mask pattern-formation approach by microphase-separated block-copolymer thin films. The technique may have significant application in the manufacture of transistor circuitry
    • …
    corecore