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ABSTRACT: The aim here is the development of a facile process to create patterns of 

inorganic oxides and metals on a substrate that can act as hard masks within a lithographic 

process. These materials should have high etch contrast (to silicon) and so allow high aspect, 

high fidelity pattern transfer whilst being readily integrate-able in modern semiconductor 

fabrication (FAB friendly). Here, we show that ultra-small dimension hard masks can be used 

to develop large areas of densely packed vertically and horizontally orientated Si nanowire 

arrays. The inorganic and metal hard masks (Ni, NiO and ZnO) of different morphologies and 

dimensions were formed using microphase separated polystyrene-b-poly(ethylene oxide) (PS-

b-PEO) block copolymer (BCP) thin films though the variation of BCP molecular weight and 

the annealing conditions such as temperature, solvent/s etc.. The self-assembled polymer 

patterns were solvent processed and metal ions included into chosen domains via a selective 

inclusion method and subsequent inorganic oxide nanopatterns were developed using 

standard techniques. It is shown by high resolution transmission electron microscopy studies 

that high aspect pattern transfer could be affected by standard plasma etch techniques. The 

masking ability of the different materials was compared in order to create the highest quality 

uniform and smooth sidewall profile of the Si nanowire arrays.  Notably, good performance 

of metal mask was seen and this could impact the use of these materials at small dimension 

where conventional methods are severely limited.   
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1. Introduction 

    Vertical and horizontal orientated (to a substrate surface plane) Silicon (Si) nanofeatures 

have important applications in nanoelectronics, photonics, sensors and biointerfaces.[1-3]  In 

these applications, there is a clear need to fabricate nano-architectures with 

morphological/structural regularity, i.e. strict control of their arrangement, size, shape as well 

as crystallographic orientation. Block copolymer (BCP) based lithographies have high 

potential as an alternative to conventional photolithography.[4-5]  Here, structurally defined 

nanopatterns are formed due to microphase separation and, with correct processing 

techniques, can form a series of nanoscale, structural arrangements close in quality to those 

formed by top-down lithographic processes.[6-10] The advantages of BCP methods 

compared to other lithographic techniques, such as ion-beam or electron-beam lithography, is 

that they can provide high throughput capability at relatively low cost. 

    However, organic BCP systems have severe pattern transfer limitations as there is limited 

etch contrast between two blocks and high aspect ratio, high quality features are challenging 

to form. An example is the polystyrene-b-polymethylmethacrylate system where high aspect 

features are difficult to achieve using conventional plasma etch techniques.[11-12]  Various 

methods have been used to enhance etch contrast and we have been central in developing 

simple solution mediated metal ion insertion to produce inorganic patterns from the BCP 

arrangement  that can act as ‘hard’ masks to allow facile and efficient, high aspect ratio 

pattern transfer.[13-17]   However, most of our work has been around iron systems and this 

material is not compatible with high volume silicon device manufacture. 

     A significant issue for the fabrication of BCP derived nanostructures is controlling the 

orientation (i.e. vertical or parallel to the substrate surface) of the microdomains by definition 

of the BCP molecular weight, composition and in particular, interfacial interactions between 

the film and the substrate.[18-19]  Many strategies have been investigated to manipulate 



interfacial interactions, to define orientation (as well as lateral alignment) of the 

microdomains including external fields (magnetic, electrical), thermal gradients during 

annealing, mechanical effects (rubbing) and pre-defined substrate topographical and chemical 

patterning.[20-23]  The cylindrical phase BCP systems appear to be more easily controlled 

than lamellar arrangements since interfacial energy control is less demanding.[24]  We, 

amongst other workers, have shown that solvent annealing is an attractive method controlling 

orientation since highly ordered arrangements can be rapidly achieved[25-26]  while the 

microdomain orientation is dictated by a complex interplay of surface energies, polymer-

solvent interactions, and the commensurability between the film thickness.[27]  However, the 

pattern transfer of the cylindrical phase system is extremely challenging because of the 

distribution of one block in a matrix of the other and the small diameter of the cylinders 

which results in poor etch selectivity and shape control.[28-30]      

     The pattern transfer performance is generally judged by etch rate, selectivity, uniformity, 

directionality, etched surface quality and reproducibility. Dielectric materials (SiO2, Al2O3 

and Si3N4 etc.), various metal oxides and metals have been used as ‘hard’ etch masks [31-34]  

because of their etch resistance relative to silicon. However, they require complex, multi-step 

pattern transfer processes from the pre-fabricated patterns. [31]  Metals (Cr, Ni), are 

somewhat limited in use, particularly for small feature sizes, as they are usually patterned by 

a lift-off technique but this can result significant distortion of the patterns and metal etching 

can present challenges.[32-35]  It should be recognized that advances in etch mask materials 

coupled to development of facile process at lower cost, could be important for the economics 

of the semiconductor and other patterning industries.[36-37]  Thus, our work on pattern 

transfer using iron oxide masks might have real relevance since it combines simple, 

controlled self-assembly with an ‘insitu’ hard mask technique.[13-15-17]   



    Herein, Our previous work is extended towards a detailed assessment of the applicability 

of different types of compatible etch masks (notably including metals) for the fabrication of 

high aspect ratio vertically and horizontally aligned Si nanopatterns. As well as extending the 

materials range, we have carried out extensive high resolution TEM to probe the pattern 

transferred features in detail.  Moreover, the size, shape and areal density can be controlled. It 

is shown that the ability of various inorganic and metal etch masks to create good sidewall 

profile, uniform Si nanorods and nanowires through a plasma based pattern transfer process. 

This fabrication technique therefore mitigates the etch limitation issues comprises with 

current lithographic processes with high throughput at lower lost. The limitations of the 

methodology are discussed. 

2. Experimental 

Preparation of hard masks nanopatterns by block copolymers: Three asymmetric cylinder 

forming PS-b-PEO diblock copolymers, Mn = 42-11.5 kg mol–1, Mw/Mn = 1.07; Mn = 32-11 

kg mol–1, Mw/Mn = 1.06; Mn = 16-5 kg mol–1, Mw/Mn = 1.04 (where, Mn is the number-

average molecular weight and Mw is the weight-average molecular weight) were purchased 

from Polymer Source (Inc., Canada). These were chosen to give a range of feature sizes of 10 

nm to 25 nm so that we could examine the efficacy of pattern transfer over a range of feature 

sizes.  Single crystal B doped P type silicon (100) wafers (thickness 650 mm, resistivity 6–14 

ohm cm) with a native oxide layer were used as a substrate. Substrates were cleaned by 

ultrasonication in acetone and toluene for 30 minutes in each solvent and dried under 

nitrogen. PS-b-PEO was dissolved in toluene to yield 1 wt% polymer solution and aged for 

12 h at room temperature. The PS-b-PEO thin film was formed by spin coating the polymer 

solution (3000 rpm for 30 s). The films were exposed to different solvents vapor (toluene) or 

a combination of solvents (toluene-water) vapors which were taken in glass viol/s placed at 

the bottom of a closed vessel at a temperature 500C or 600C to induce necessary chain 



mobility and allow microphase separation to occur to create hole and line/space patterns. 

Partial etching and domain modification of PEO was carried out by ultrasonication of the 

films for different time period in anhydrous alcohol at room temperature. After the desired 

time, the films were taken out from alcohol and dried immediately. For the fabrication of 

hard masks nanopatterns, the inorganic salt precursor was dissolved in ethanol and spin-

coated onto the activated film. UV/Ozone treatment was used to oxidize the precursor and 

remove polymer. Nickel nitrate hexahydrate (Ni(NO3)3,6H2O) and zinc nitrate hexahydrate 

(Zn(NO3)3,6H2O) were used as precursors. Nickel oxide nanopatterns were reduced under 

Ar/H2 atmosphere at a temperature of 8000C for 4 h to generate nickel metal nanostructures.  

    Pattern transfer using ICP etch: These horizontal and vertical oriented oxides and metal 

nanowire arrays were used as hard mask for pattern transfer to the substrate using an STS, 

Advanced Oxide Etch (AOE) inductively coupled plasma (ICP) etcher as previously 

reported.[15]  Scheme 1 (I) and (II) represents the fabrication steps for vertical and horizontal 

aligned Si nanowires arrays. The system has two different RF generators, the first, generates 

and controls the plasma density whilst the other control ion energy. A two stage etching 

process was used to, firstly, etch the native silica layer and, secondly, the silicon substrate. 

During etching, the sample is thermally bonded to a cooled chuck (100C) with a pressure 9.5 

Torr. For the oxide layer etch, the process parameters were optimised to a C4F8/H2 gas 

mixture (21 sccm/30 sccm) using an ICP coil power of 800 W and a Reactive Ion Etching 

(RIE) power of 80 W. The silica etch time was kept constant (5 sec) for all the samples. For 

Si pillar fabrication, the process used a controlled gas mixture of C4F8/SF6 at flow rates of 90 

sccm/30 sccm respectively and the ICP and RIE power were set to 600 W and 15 W 

respectively at a chamber pressure of 15 mTorr.  

Characterizations: Surface morphologies were imaged by scanning probe microscopy (SPM, 

Park systems, XE-100) in tapping mode and scanning electron microscopy (SEM, FEI 



Company, FEG Quanta 6700 and Zeiss Ultra Plus). The film thicknesses were measured by 

optical ellipsometer (Woolam M2000) and electron microscopy. Samples were prepared for 

TEM cross sectional imaging with an FEI Helios Nanolab 600i system containing a high 

resolution Elstar™ Schottky field-emission SEM and a Sidewinder FIB column and were 

further imaged by transmission electron microscopy (TEM, JEOL 2100 and TEM, FEI 

Titan). X-Ray photoelectron spectroscopy (XPS) experiments were conducted on a Thermo 

K-alpha machine with Al Kα X-ray source operating at 72 W.  

3. Results and Discussion  

3.1. BCP microphase separation: dimensional, morphological and orientation control. We 

firstly briefly review the effect of solvents and annealing temperature on the morphology and 

orientation of different molecular weight cylindrical PS-PEO patterns where PEO is the 

minority cylinder forming block. The dimensional control over the self-assembled block 

copolymer nanopatterns was achieved by different molecular weight PS-PEO systems and the 

corresponding compositions of the constituent blocks represented as S1 (42k-11.5k), S2 (32k-

11k) and S3 (16k-5k). The coated films were annealed at a temperature 500 C or 600 C either 

in toluene or in toluene/water mixed solvents vapours to induce phase separation and control 

the orientation of the cylindrical domains. Conditions were highly dependent on the block 

compositions. Fig. 1 shows the representative tapping mode AFM images of the PS-b-PEO 

systems after the solvent vapour exposure and indicates ordered arrangements over large 

areas with no indication of de-wetting.  Well-ordered regular dot patterns were realized for 

S1 and S3 (Figs. 1a and c) when exposed to toluene/water vapour and S2 (Fig. 1b) in toluene 

at a temperature 500 C for 1h. The solvent/s chosen for solvent annealing depending on the 

molecular weight and weight fraction of PS (fPS) of the systems.[17]  A cylindrical 

reorientation to horizontally aligned fingerprint patterns was noticed for S1 when annealed 

under toluene vapour at a temperature of 600 C (Fig. 1d).  The films are of regular thicknesses 



of 40 nm, 25 nm and 35 nm for S1, S2 and S3 respectively irrespective of the cylinder 

orientation (Table 1). No large scale surface roughness or thickness undulation was observed. 

The corresponding average centre to centre distances between adjacent microdomains are 42 

nm, 32 nm and 25 nm whereas the PEO cylinder diameters were 19.3 nm, 17 nm and 11 nm 

respectively. The intense spots in the FFT pattern shown in the insets of the AFM images 

(Figures 1a-c) confirms the hexagonal arrangement of PEO cylinders. The detailed 

mechanism of the microphase separation and ordering is described in our previous works.[16-

17-38]    

3.2. Preparation of Nanoporous polymer template. In order to incorporate inorganic material 

features into the PS-PEO nanopatterns, chemical degradation and/or modification of the PEO 

blocks, a process that leads to removal and densification of the PEO domains to produce 

nanopores is necessary.[13-16] This has been achieved by ultrasonication of the thin films in 

anhydrous ethanol for different periods of time depending on the morphology and feature size 

of the PEO blocks. As reported, [13-16] the ethanol treatment leads to removal of PEO 

blocks but a thin layer exists on top of the nanopores consists of crystalline PEO and trapped 

ethanol molecules. The structural periodicity and dimensions are essentially unchanged after 

ethanol treatment as revealed by SEM images in Fig. 2 and described by Scheme 1. The 

optimized ultrasonication times are 17 min, 15 min, 10 min and 20 min for S1, S2 and S3 

dots and S1 fingerprints respectively. Presumably, the reduction in the optimum time as 

molecular weight decreases is related to reduce mass transport limitations at smaller 

dimensions. Note that the ethanol exposure had to be carefully optimized as longer 

exposures/higher temperatures resulted in surface roughness or structural degradation of the 

films. Following ethanol exposure, all the images showed an increment in the phase contrast 

without affecting the long range order (Figs. 2a-d). Further, the cylinder to cylinder spacings 

and the PEO cylinder diameters remained unchanged. No thickness change was observed as 



measured by ellipsometry (Table 1). No deformation or discontinuity of the nanoporous 

template was observed. The polymer nanoporous template formed is monolayer and well 

adhered to the substrate surface as previously reported by us.[16-17]   

3.3. Fabrication of inorganic oxides and metal nanostructure arrays. 

3.3.1. NiO nanodots: dimensional control. As outlined above, in order to increase the etch 

contrast the activated templates can be used to create ordered oxide nanopatterned arrays by 

metal inclusion and subsequent UV/Ozone treatment. In contrast to our previous studies, the 

methodology has been extended to fabrication of friendly materials here and particularly 

metals.[14-17]  Attempts were made to adapt this strategy to produce silicon nanowire arrays 

by use of different hard masks and to determine the best suitable mask to fabricate good 

quality Si patterns. The nanoporous polymer templates from S2 and S3 were utilized to form 

ordered nickel oxide (NiO) and nickel (Ni) nanodot arrays. Figs. 3a, inset and 3c represents 

the AFM and SEM images of the NiO nanodots prepared using the templates of S2 and S3 

respectively using 1 wt% and 0.6 wt% precursor-ethanolic solutions. Note that the reduced 

solution concentration is consistent with the pore volume decrease for films of smaller 

molecular weight. The concentrations of the precursor-ethanolic solutions were adjusted to 

avoid overfilling of the nanopores. The film thicknesses after spin coating the metal 

precursors before and after the UV/Ozone treatment are summarized in Table 1. It is 

suggested that the hydrophobic nature of PS prevents metal ion inclusion into the PS 

component whilst selective inclusion into the porous template is favoured by a combination 

of capillary forces and the affinity of PEO with the ionic solution. Because the ethanol 

treatment etched most of the PEO blocks but a very thin crystalline PEO layer reside within 

the nanopores which assist the process of inclusion of the metal ions.[16]  The process of 

inclusion is highly rapid and takes place in a few seconds during spin coating consistent with 

this principle.[38]  Ordered large area nanodot arrays were realized with uniform size/shape 



and their arrangement mimics that of the original BCP patterns. The reduction in solution 

concentration clearly reflects the pore volume decrease for the films of smaller molecular 

weight. The average diameters of the nanodots were 22 ± 3 nm, 16 ± 2 nm for S2 and S3 

respectively. The average nanodot heights were between 6-8 nm as measured by 

ellipsometry. The density of the nanodots on the substrate is measured approximately 1.1 x 

1011 and 6.7 x 1011 nanodots cm-2. The TEM cross-section in the inset of Figure 3a also 

confirms the ordered arrangement and the dimension of the nanodots. The nanodots are well-

adhered to the substrate and there is no deformation or delamination noticed. This 

methodology of creation of oxide nanodots array allows dimensional and spatial control over 

a large substrate area (Scheme 1). 

3.3.2. Generation of Ni metal nanodots: dimensional control. Importantly, these NiO 

nanodots arrays could be utilized to create Ni metal nanodots without affecting their spatial 

arrangement. This demonstrates the physical and mechanical robustness of the developed 

nanostructures. The reduction process employed a high temperature of 8000C under Ar/H2 

flowing atmosphere for 4 h. Figs. 3b, inset and 3d represents the AFM and SEM images of 

the Ni nanodots prepared using S2 and S3 respectively. Similarly ordered nanodot 

arrangement was realized for both the samples. A reduction in the diameter and height is 

noticed for both the samples because of high temperature densification and chemical 

reduction. The average measured diameters of the nanodots were 18 ± 3 nm, 13 ± 2 nm for 

S2 and S3 respectively. The average nanodot heights were between 5-7 nm as measured by 

ellipsometry whereas the areal density was unchanged. 

3.3.3. ZnO nanodots: Morphology control. A similar strategy was utilized to fabricate Zinc 

oxide (ZnO) nanodots and nanowire arrays using S1 nanoporous hole and line templates. The 

SEM images in Figs. 3e and 3f represents the ZnO nanodots and nanowire arrays using 0.8 

wt% and 1.5 wt% precursor-ethanolic solutions. Large area arrays were realized with uniform 



size/shape and their arrangement mimics that of the original BCP patterns (Scheme 1). The 

diameters of the nanodots and nanowires were ~ 24 nm and 18 nm respectively. The 

ellipsometry measured heights of the nanodots and nanowires were ~ 9 nm and 7 nm 

respectively. The nanowires were continuous and no diameter variation is noticed throughout 

their entire length. It should be noted that the concentration of the precursor solution is 

critical and was carefully optimized to obtain isolated and continuous nanowires (see 

supporting information).  

3.3.4. Compositional analysis by XPS. The chemical composition of the oxide and metal 

nanodot and nanowire assemblies was confirmed by high resolution Ni 2p and Zn 2p XPS 

spectra. In Fig. 4a, Ni 2p3/2 and Ni 2p1/2 spectrum is shown for the nanodots prepared with S2 

annealed at a temperature of 8000C. The Ni 2p core level spectrum consists of four peaks at 

856/861.9 eV and 873.6/880.5 eV corresponding to the Ni 2p3/2 and Ni 2p1/2 signals attributed 

to Ni2+ as the major phase.[39]  A typical XPS survey spectrum (not shown) of nickel oxide 

nanodots after annealing confirms the expected presence of Si, O, C and Ni. The C1s feature 

is relatively small and demonstrates effective removal of carbon species during processing. 

Its intensity is consistent with adventitious material formed by adsorption and other 

contamination during sample preparation. The Ni 2p3/2 core level spectrum for the metal 

nanodots prepared with S2 (Fig. 4b) after the reduction process consists of a main photopeak 

at 852.6 eV and an associated satellite peak at 858.9eV can be attributed to metallic Ni.[40]  

This confirms complete reduction of NiO to metallic Ni without affecting the lateral ordering 

for the nanodot arrays. Similar spectra were observed for the nanodots prepared with lower 

molecular weight BCP (S3). Fig. 4c presents the XPS Zn 2p core-level spectra of the zinc 

oxide nanowire arrays prepared with S1. The XPS Zn 2p spectra are simple spin-orbit 

doublets formed by the Zn 2p3/2 and Zn 2p1/2 electrons with binding energies of 1021.6 eV 

and 1044.7 eV respectively.[41]  This can be attributed to Zn2+ oxidation states of ZnO.  



3.4. Fabrication of Si nanowire arrays 

3.4.1. NiO and Ni masks: dimension control. In order to create Si nanostructure arrays 

(Scheme 1(I)) on the substrate surface, the oxides and metallic nanopatterns were used as 

resistant masks in the ICP etch process. Note that the initial silica etch (prior to the silicon 

etch to pattern transfer) removes the exposed native silica layer on top of the substrate but not 

the areas directly below the mask. Thus, the uppermost face of the silicon nanofeatures has a 

layer of native oxide following mask. Figs. 5a-f shows SEM top-down and cross-sectional 

images of the Si features formed (including the oxide mask) for different etch times. Fig. 5a 

demonstrates a densely packed, uniform, ordered arrangement of vertically aligned Si 

nanowire arrays over large areas after 5 min Si etch with NiO mask for S2. The average 

height of the Si nanowires is around 150 nm. The higher magnification image in the inset of 

Fig. 5a shows the wires to be of uniform diameter (~ 20 nm) along their length and no 

shadowing effect of mask is observed. Further, smooth sidewalls are produced. Similar 

hexagonally arranged dense vertically aligned Si nanowire arrays of height ~100 nm were 

formed after 5 min Si etch with Ni mask for S2. The average diameter and spacing between 

the nanowires remained unchanged. Fig. 5c shows large area view of the pattern transferred 

substrate for S3 with NiO, which demonstrate this protocol is applicable to smaller 

dimensions. The nanowires with good sidewall profile with average diameter and height of 

15 nm and 150 nm for 5 min Si etch time. Densely packed Si nanowire patterns of diameter 

and height ~ 12 nm and 100 nm respectively are realized for a 5 min Si etch for S3 with Ni 

mask. No surface roughening or pattern damage is seen with decreasing the diameter or 

increasing the height of the wires.  

    Note that the silica etch step did produce some lateral etching of features which decreases 

the diameter of the masks. Table 1 shows the feature diameter for the BCP pattern, the 

‘activated’ pattern, after inclusion and formation of the hard mask and following the etch 



treatment. In all cases the diameter of features reduced on pattern transfer. Since the wires do 

not change in diameter down their length, it can be concluded lateral etching was performed 

by the silica etch whist the more selective silicon etch had little effect on the mask. Thus, 

nickel oxide and nickel can act as highly effective hard masks in the ICP etching process.  

3.4.2. ZnO mask: Morphology control. The applicability of ZnO as an etch mask for 

fabricating vertically and horizontally aligned nanowire patterns was also examined (Scheme 

1). Fig. 5e shows large area dense vertically aligned nanowire arrays for 10 min Si etch with 

ZnO nanodots as an etch mask prepared using S1. The diameter and height of the nanowires 

were ~ 20 nm and 400 nm respectively. No sloping or tapering of the features is noticed. The 

higher magnification SEM image in the inset reveals nanowires with good sidewall profile 

and uniform diameter through their entire length. In few of the nanowires, nanoparticle-like 

deposition was observed towards the tip which might be because of the deposition of 

amorphous polymer layer during the etch process as explained before.[15]  Fig. 5f shows the 

SEM images of densely packed, uniform, ordered arrangements of horizontal Si nanowires 

over large areas of the substrate for 3 min Si etch with ZnO mask formed by S1. The 

significant contrast enhancement suggests pattern transfer has occurred. A higher 

magnification image (inset of Figure 5f) demonstrate that the nanowires are continuous and 

of regular diameter (16 nm) along the length. The centre to centre nanowire spacing remained 

unchanged. This implies that the etching does not damage the original ‘mask’ to a significant 

extent. 

3.4.3. Control over aspect ratio. Because of the hardmask character, the heights of the 

resultant vertically aligned nanowire patterns can be varied by changing the Si etch time 

without altering other processing conditions. At the longer etch times, well defined good 

quality nanowire arrays can be formed which reflects the etch resistant ability of the etch 

masks. Figs. 6a-e shows the cross-sectional SEM images of the hexagonal patterned uniform 



Si nanopillars (or nanowires) with vertical smooth sidewalls of average heights about 50 nm, 

100 nm, 250 nm, 400 nm and 500 nm for 2 min, 4 min, 8 min, 12 min and 15 min Si etch 

periods respectively with NiO as a resistant mask prepared with S2. All the images 

demonstrate good coverage of the nanopillar/nanowire arrays over a large area. The 

diameters of the nanopillars are almost equal throughout its entire length with little indication 

of narrowing or broadening. The images reveal quite narrow distribution of the aspect ratio of 

the wires. The higher magnification image shown in the inset of Fig. 6d  reveals nanoparticle 

like deposition at the tip portion of the nanowires for longer etch times. The variation of 

average nanowire height with the Si etch time using NiO as a hard mask is plotted 

(Supporting Information) which increases linearly with etch time at a constant rate 33 nm 

min-1. Similarly well ordered uniform Si nanopillars (or nanowires) with vertical smooth 

sidewalls of average heights about 40 nm, 80 nm, 160 nm, 250 nm and 320 nm for 2 min, 4 

min, 8 min, 12 min and 15 min Si etch periods respectively with Ni as a resistant mask 

prepared with S2 as shown in the cross-sectional SEM images (Figs. 6f-j). Compared to the 

Si nanowires formed with NiO mask, better quality smooth sidewall profile without any 

surface roughness on the nanowires were realized using Ni as resistant mask. No surface 

pattern damage is seen with increasing the height of the nanowires. Thus, ultra dense, high 

aspect ratio vertical silicon nanopillars/wires with a controlled placement and spacings over a 

large area can be realised by using both NiO and Ni as hard mask in the ICP etching process. 

The average Si etch rate measured using Ni is around 22 nm min-1 (Supporting Information). 

This might be due to more erosion rate of the Ni mask than NiO but no significant diameter 

variation is noticed along the nanowire length. A well balanced etch/deposition process, gas 

flow rates was selected to avoid sidewall corrugation or scalloping and mask erosion. Further, 

low temperature was chosen to improve the silicon etching anisotropy and to decrease the 

etch rate of the masks.[15]  



3.4.4. Quality of the nanowires by cross-sectional TEM and EDAX mapping. The 

morphology, interface, crystallinity of the vertically and horizontally aligned Si nanowire 

patterns as well as an estimation of the mask erosion rates (viz. NiO and ZnO) was further 

examined using TEM cross-sections. This is important because detailed assessment of the 

pattern transfer process is needed.  Fig. 7a show micrographs of the well ordered equidistant 

array (~32 nm) of 5 min etched nanowires on Si substrates using NiO mask developed from 

S2. The higher magnification image (Fig. 7b) reveal Si nanowires of about 150 nm heights 

and 18-20 nm diameter with NiO masks on the upper surface. These data confirm the 

robustness of the mask in these etch conditions. The quality of the sidewalls was also 

revealed by the higher magnification TEM image. As can be seen, the diameter of the 

nanowires (~15 nm) remained unaltered along their length. The adhesion of the mask and its’ 

mechanical integrity is also indicated by the robustness of the features during FIB processing.  

Elemental composition was confirmed by high resolution EDAX mapping and the 

distribution of Ni, O and Si are shown in Fig. 7c. The Si and Ni map shows a homogeneous 

distribution of silicon corresponding to each nanowire with sharp elemental interface with 

nickel oxide suggesting no inter-diffusion occurs after pattern transfer. The O map confirms 

the presence of oxides in nickel oxide at top and native silica layer of the substrate. Fig. 7d 

show the higher magnification image of the well ordered array (~32 nm) of 5 min etched 

nanowires on Si substrates with Ni at top for S2. The nanowires are of about 100 nm heights 

with Ni masks of diameter ~16 nm at top. The diameter of the Si nanowires of about 15 nm 

equal throughout their length. The Si and Ni map shows a homogeneous distribution of 

silicon corresponding to each nanowire with sharp elemental interface with nickel while O 

map confirms the formation of nickel metal at top and native silica layer of the substrate. This 

also suggests better masking ability for Ni mask than NiO. 



Figs. 7f-h reveals the masking ability of horizontally aligned ZnO nanowire arrays to create 

Si nanowires prepared using S1. Fig. 7f shows hexagonally arranged ordered array of Si 

nanowires with ZnO at top. A clear contrast difference is noticed at the top of the nanowire 

due to ZnO which shows the mask was not removed through the pattern transfer process. The 

diameter and spacings of the nanowires remained unchanged which is 16 nm and 42 nm 

respectively. The higher magnification image (Fig. 7g) reveals small variation in diameter of 

the nanowires which decreases towards top of the wire. All of the wires investigated had 

smooth sidewalls. Elemental composition shown in Figure 7h reveals clear interface between 

Si, O and Zn. The measured thickness of the ZnO mask is around 6 nm reveals the 

effectiveness of the mask after the pattern transfer process. 

     Importantly, the HRTEM images for both the vertically and horizontally aligned 

nanowires (See Supporting Information) reveal highly crystalline structure with no sign of 

etch related amorphortization. The lattice fringes are continuous between bulk and nanowire 

silicon indicating no stacking or other defects and hence no re-crystallization during etching. 

The image shows the lattice fringes with spacing 3.11 Ǻ across the wires agrees reasonably 

well with the Si FCC (111) interplanar distances.[42]  The 540 angle of the (111) fringes with 

the substrate surface plane is consistent with the (100) orientation of the Si wafer. Thus, 

highly dense uniform 1D silicon nanowire arrays with controlled crystallographic orientation 

could be created through selective etching of the silicon wafers of chosen orientations.  

4. Conclusion  

    Hexagonally arranged self-assembled PS-b-PEO nano dots/line patterns were realized by a 

simple solvent annealing process as a function of annealing temperature and annealing 

solvent/s. The dimension and lateral spacings can be controlled by the molecular weight of 

BCP. An effective ethanol treatment was followed for the modification of the PEO cylinders 

to create templates for the generation of inorganic materials without pattern damage. The 



nickel oxide and zinc oxide nanodots and nanowire arrays were generated by selective metal 

ion inclusion and subsequent Uv/Ozone treatment which mimics the original self-assembled 

BCP pattern. Nickel metal was produced further by the reduction process of NiO under Ar/H2 

atmosphere at high temperature without any pattern damage. We demonstrate the pattern 

transfer ability and effectiveness of different etch masks to fabricate horizontally and 

vertically aligned uniform nanowire arrays over large substrate area with controlled 

placement and density. All of the masks were found to have the ability to form large area, 

identical ordered, crystalline, vertically and horizontally aligned Si nanowire arrays with a 

smooth sidewall profile through ICP Si etch process. Both lateral and longitudinal variation 

of the Si nanopatterns was achieved by varying the molecular weight of the BCP and the Si 

etch time. Compared to dimension and quality of the Si patterns formed, Ni metal shows 

better masking ability regarding uniform, smooth sidewall profile and less erosion speed. No 

additional defects or inter-diffusion of the materials was observed during the pattern transfer 

process. This self-assembled hardmask nanolithography can also be an important component 

in the manufacturing of nanoscale devices with high throughput and low cost compatible with 

current lithography. 

Author information 

Corresponding Authors 

*Email: morrism2@tcd.ie; g_tandra@yahoo.co.in 

Notes 

The authors declare no competing financial interest. 

Acknowledgements 

We acknowledge financial support from the Science Foundation Ireland AMBER grant 

12/RC/2278 and Semiconductor Research Corporation (SRC) grant 2013-OJ-2444. The 

mailto:morrism2@tcd.ie


contribution of the Foundation’s Principal Investigator support is also acknowledged. We 

would also like to thank Dr. Clive Downing for the TEM assistance. 

REFERENCES 

[1] Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. 

High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 

31-35. 

[2] Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated 

nanowire field effect transistors. Nano Lett. 2006, 6, 973-977. 

[3] Trivedi, K.; Yuk, H.; Floresca, H. C.; Kim, M. J.; Hu, W. Quantum Confinement Induced 

Performance Enhancement in Sub-5-nm Lithographic Si Nanowire Transistors. Nano Lett. 

2011, 11, 1412-1417. 

[4] Moonen, P. F.; Yakimets, I.; Huskens, J. Fabrication of Transistors on Flexible 

Substrates: from Mass-Printing to High-Resolution Alternative Lithography Strategies. Adv. 

Mater. 2012, 24, 5526-5541. 

[5] Doerk, G. S.; Cheng, J. Y.; Singh, G.; Rettner, C. T.; Pitera, J. W.; Balakrishnan, S.; 

Arellano, N.; Sanders, D. P. Enabling complex nanoscale pattern customization using 

directed self-assembly. Nat. Commun. 2014, 5. 

[6] Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Lammertink, R. G. H.; Vancso, 

G. J. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 

2001, 13, 1174-+. 

[7] Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J. Ordering and melting of 

block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 2003, 36, 3272-

3288. 



[8] Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Fabrication of 

nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 

2002, 81, 3657-3659. 

[9] Lopes, W. A.; Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on 

diblock copolymer scaffolds. Nature 2001, 414, 735-738. 

[10] Ruiz, R.; Kang, H. M.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; 

de Pablo, J. J.; Nealey, P. F. Density multiplication and improved lithography by directed 

block copolymer assembly. Science 2008, 321, 936-939. 

[11] Borah, D.; Shaw, M. T.; Rasappa, S.; Farrell, R. A.; O'Mahony, C.; Faulkner, C. M.; 

Bosea, M.; Gleeson, P.; Holmes, J. D.; Morris, M. A. Plasma etch technologies for the 

development of ultra-small feature size transistor devices. J. Phys. D-Appl. Phys. 2011, 44, 

174012. 

[12] Farrell, R. A.; Kinahan, N. T.; Hansel, S.; Stuen, K. O.; Petkov, N.; Shaw, M. T.; West, 

L. E.; Djara, V.; Dunne, R. J.; Varona, O. G.; Gleeson, P. G.; Jung, S. J.; Kim, H. Y.; 

Kolesnik, M. M.; Lutz, T.; Murray, C. P.; Holmes, J. D.; Nealey, P. F.; Duesberg, G. S.; 

Krstic, V.; Morris, M. A. Large-scale parallel arrays of silicon nanowires via block 

copolymer directed self-assembly. Nanoscale 2012, 4, 3228-3236. 

[13] Ghoshal, T.; Maity, T.; Godsell, J. F.; Roy, S.; Morris, M. A. Large Scale Monodisperse 

Hexagonal Arrays of Superparamagnetic Iron Oxides Nanodots: A Facile Block Copolymer 

Inclusion Method. Adv. Mater. 2012, 24, 2390-2397. 

[14] Ghoshal, T.; Ntaras, C.; O'Connell, J.; Shaw, M. T.; Holmes, J. D.; Avgeropoulos, A.; 

Morris, M. A. Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a 

novel block copolymer method: optical properties. Nanoscale 2016, 8, 2177-2187. 



[15] Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. “In 

situ” hard mask materials: a new methodology for creation of vertical silicon nanopillar and 

nanowire arrays. Nanoscale 2012, 4, 7743-7750. 

[16] Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. 

Fabrication of Ordered, Large Scale, Horizontally-Aligned Si Nanowire Arrays Based on an 

In Situ Hard Mask Block Copolymer Approach. Adv. Mater. 2014, 26, 1207-1216. 

[17] Ghoshal, T. M., T; Senthamaraikannan, R; Shaw, M; Carolan, P; Holmes, J; Roy, S; 

Morris, M Size and space controlled hexagonal arrays of superparamagnetic iron oxide 

nanodots: magnetic studies and application. Scientific Reports 2013, 3, 2772. 

[18] Hawker, C. J.; Wooley, K. L. The convergence of synthetic organic and polymer 

chemistries. Science 2005, 309, 1200-1205. 

[19] Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. 

Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned 

substrates. Nature 2003, 424, 411-414. 

[20] Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Graphoepitaxy of spherical domain block 

copolymer films. Adv. Mater. 2001, 13, 1152-1155. 

[21] Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-

Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density 

nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 

2126-2129. 

[22] Cheng, J. Y.; Mayes, A. M.; Ross, C. A. Nanostructure engineering by templated self-

assembly of block copolymers. Nat. Mater. 2004, 3, 823-828. 

[23] De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Microdomain patterns from directional 

eutectic solidification and epitaxy. Nature 2000, 405, 433-437. 



[24] Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block 

copolymer patterns. Polymer 2003, 44, 6725-6760. 

[25] Zhao, J. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. Study of the time evolution of 

the surface morphology of thin asymmetric diblock copolymer films under solvent vapor. 

Polymer 2005, 46, 6513-6521. 

[26] Mokarian-Tabari, P.; Collins, T. W.; Holmes, J. D.; Morris, M. A. Cyclical "Flipping" of 

Morphology in Block Copolymer Thin Films. ACS Nano 2011, 5, 4617-4623. 

[27] Fasolka, M. J.; Mayes, A. M. Block copolymer thin films: Physics and applications. Ann. 

Rev. Mater. Res. 2001, 31, 323-355. 

[28] Gu, X. D.; Liu, Z. W.; Gunkel, I.; Chourou, S. T.; Hong, S. W.; Olynick, D. L.; Russell, 

T. P. High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates. 

Adv. Mater. 2012, 24, 5688-5694. 

[29] Ruiz, R.; Sandstrom, R. L.; Black, C. T. Induced orientational order in symmetric 

diblock copolymer thin films. Adv. Mater. 2007, 19, 587-591. 

[30] Xu, J.; Hong, S. W.; Gu, W. Y.; Lee, K. Y.; Kuo, D. S.; Xiao, S. G.; Russell, T. P. 

Fabrication of Silicon Oxide Nanodots with an Areal Density Beyond 1 Teradots Inch-2. Adv. 

Mater. 2011, 23, 5755-+. 

[31] Fang, Q. L.; Li, X. D.; Tuan, A. P.; Perumal, J.; Kim, D. P. Direct pattern transfer using 

an inorganic polymer-derived silicate etch mask. J. Mater. Chem. 2011, 21, 4657-4662. 

[32] Lim, K. M.; Gupta, S.; Ropp, C.; Waks, E. Development of metal etch mask by single 

layer lift-off for silicon nitride photonic crystals. Microelectron. Eng. 2011, 88, 994-998. 

[33] Rangelow, I. W. Dry etching-based silicon micro-machining for MEMS. Vacuum 2001, 

62, 279-291. 



[34] Krishnamoorthy, S.; Manipaddy, K. K.; Yap, F. L. Wafer-Level Self-Organized 

Copolymer Templates for Nanolithography with Sub-50 nm Feature and Spatial Resolutions. 

Adv. Funct. Mater. 2011, 21, 1102-1112. 

[35] Hsieh, H. Y.; Huang, S. H.; Liao, K. F.; Su, S. K.; Lai, C. H.; Chen, L. J. High-density 

ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and 

excellent field emission properties. Nanotechnology 2007, 18, 505305. 

[36] Sanders, D. P. Advances in Patterning Materials for 193 nm Immersion Lithography. 

Chem. Rev. 2010, 110, 321-360. 

[37] Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027-1031. 

[38] Ghoshal, T.; Shaw, M. T.; Bolger, C. T.; Holmes, J. D.; Morris, M. A. A general method 

for controlled nanopatterning of oxide dots: a microphase separated block copolymer 

platform. J. Mater. Chem. 2012, 22, 12083-12089. 

[39] Wang, X. Y.; Wu, W.; Chen, Z. L.; Wang, R. H. Bauxite-supported Transition Metal 

Oxides: Promising Low-temperature and SO2-tolerant Catalysts for Selective Catalytic 

Reduction of NOx. Scientific Reports 2015, 5. 

[40] Nesbitt, H. W.; Legrand, D.; Bancroft, G. M. Interpretation of Ni2p XPS spectra of Ni 

conductors and Ni insulators. Phys. Chem. Miner. 2000, 27, 357-366. 

[41] Harati, M.; Love, D.; Lau, W. M.; Ding, Z. F. Preparation of crystalline zinc oxide films 

by one-step electrodeposition in Reline. Mater. Lett. 2012, 89, 339-342. 

[42] Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Uniform, axial-orientation 

alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem.-Int. 

Edit. 2005, 44, 2737-2742. 

 

 

 



Table 1. The film thicknesses and diameters of the PEO cylinders for the BCP before and 

after ethanol treatment, film thickness after spin coating precursor solutions, thickness and 

diameter of the nanopatterns before and after Uv/Ozone treatment and the diameter of the 

etched Si nanowires. 

Mask Polymer 

used 

Film 

thickness/PEO 

cylinder 

diameter after 

solvent 

annealing (nm) 

Film 

thickness/PEO 

cylinder 

diameter after 

ethanol 

treatment (nm) 

Film 

thickness 

after spin 

coating 

precursor 

solution 

(nm) 

Thickness/dia

meter of 

Nanopatterns 

after inclusion 

and Uv/Ozone 

treatment (nm) 

Diameter 

of Si 

nanowire

s after 

pattern 

transfer 

(nm) 

NiO S2 25/17 25/17 ~ 27 6-8/22 

(nanodots) 

20 

NiO S3 35/11 35/11 ~ 36 6-8/16 

(nanodots) 

15 

Ni S2 25/17 25/17 - 5-7/18 

(nanodots) 

15 

Ni S3 35/11 35/11 - 5-7/13 

(nanodots) 

12 

ZnO S1 40/19.3 40/19.3 44 9/24 

(nanodots) 

20 

ZnO S1 40/19.3 40/19.3 42 7/18 

(nanowires) 

16 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Scheme 1: Schematic illustration of the fabrication of vertical (I) and horizontal (II) ordered 

Si nanowires on substrate. (A) PEO cylinders (I) perpendicular and (II) parallel to the 

substrate in the PS matrix after solvent annealing (B) Modification of PEO cylinders creates 

nanoporous template (C) precursor solution spin coated on the template (D) metal oxide 

nanodots (I) and nanowires (II) formed after UV/ozone treatment (E and F) Si nanowires 

fabricated by consecutive silica and silicon ICP etch processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Tapping mode AFM images of the different molecular weight PS-PEO thin films 

solvent annealed for 1h (a) 42k-11.5k (S1) in toluene/water at 500 C, (b) 32k-11k (S2) in 

toluene at 500 C, (c) 16k-5k (S3) in toluene/water at 500 C and (d) 42k-11.5k (S1) in toluene 

at 600 C. All the images are 2 x 2 μm. Insets show corresponding FFT patterns. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 SEM images of the nanoporous templates after ultrasonication in anhydrous ethanol 

for different time (a) S1, 17 min, (b) S2, 15 min, (c) S3, 15 min and (d) S1, 20 min 

respectively.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Well ordered nanodots patterns prepared by spin coating different precursor-

ethanolic solution formed after UV/Ozone treatment (a) S2, NiO, (c) S3, NiO, (e) S1, ZnO. 

Ni metal nanodots patterns formed by reducing NiO at a high temperature of 8000C under 

Ar/H2 flowing atmosphere for 4 h for (b) S2 and (d) S3. (f) Horizontally aligned ZnO 

nanowire patterns by S1. Inset of (a) shows cross-sectional TEM image of well ordered  NiO 

nanodots on Si substrate. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Ni 2p and Zn 2p spectra nanodots and nanowires for (a) NiO by S2, (a) Ni by S2 

and (b) ZnO by S1 respectively. 
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Figure 5 Vertically aligned Si nanowire patterns formed after silica and silicon etch for 

different Si etch time with different molecular weight PS-PEO system and different masking 

materials. (a) S2, NiO, 5 min, (b) S2, Ni, 5 min, (c) S3, NiO, 5 min, (d) S3, Ni, 5 min, (e) S1, 

ZnO, 10 min respectively. (f) Horizontally aligned Si nanowire patterns formed for S1 with 

ZnO after 3 min Si etch. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Vertically aligned Si nanowire patterns of different heights formed after silica and 

silicon etch for different Si etch time with different molecular weight PS-PEO system and 

different masking materials. (a-e) S2, NiO, 2 min, 4 min, 8 min, 12 min, 15 min, (f-j) S2, Ni, 

2 min, 4 min, 8 min, 12 min, 15 min respectively. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Cross-sectional TEM images of vertically and horizontally aligned nanowires with 

different etch mask for different Si etch time with (a, b) S2, NiO, 5 min (d) S2, Ni, 5 min, (f, 

g) S1, ZnO, 3 min respectively. (c), (e) and (h) represents corresponding elemental mapping 

for Ni, O, Si and Zn. 

 

 

 

 

 

 


