164 research outputs found

    Fingerprinting Smart Devices Through Embedded Acoustic Components

    Full text link
    The widespread use of smart devices gives rise to both security and privacy concerns. Fingerprinting smart devices can assist in authenticating physical devices, but it can also jeopardize privacy by allowing remote identification without user awareness. We propose a novel fingerprinting approach that uses the microphones and speakers of smart phones to uniquely identify an individual device. During fabrication, subtle imperfections arise in device microphones and speakers which induce anomalies in produced and received sounds. We exploit this observation to fingerprint smart devices through playback and recording of audio samples. We use audio-metric tools to analyze and explore different acoustic features and analyze their ability to successfully fingerprint smart devices. Our experiments show that it is even possible to fingerprint devices that have the same vendor and model; we were able to accurately distinguish over 93% of all recorded audio clips from 15 different units of the same model. Our study identifies the prominent acoustic features capable of fingerprinting devices with high success rate and examines the effect of background noise and other variables on fingerprinting accuracy

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    A Network Congestion control Protocol (NCP)

    Get PDF
    The transmission control protocol (TCP) which is the dominant congestion control protocol at the transport layer is proved to have many performance problems with the growth of the Internet. TCP for instance results in throughput degradation for high bandwidth delay product networks and is unfair for flows with high round trip delays. There have been many patches and modifications to TCP all of which inherit the problems of TCP in spite of some performance improve- ments. On the other hand there are clean-slate design approaches of the Internet. The eXplicit Congestion control Protocol (XCP) and the Rate Control Protocol (RCP) are the prominent clean slate congestion control protocols. Nonetheless, the XCP protocol is also proved to have its own performance problems some of which are its unfairness to long flows (flows with high round trip delay), and many per-packet computations at the router. As shown in this paper RCP also makes gross approximation to its important component that it may only give the performance reports shown in the literature for specific choices of its parameter values and traffic patterns. In this paper we present a new congestion control protocol called Network congestion Control Protocol (NCP). We show that NCP can outperform both TCP, XCP and RCP in terms of among other things fairness and file download times.unpublishe

    Defending Tor from Network Adversaries: A Case Study of Network Path Prediction

    Full text link
    The Tor anonymity network has been shown vulnerable to traffic analysis attacks by autonomous systems and Internet exchanges, which can observe different overlay hops belonging to the same circuit. We aim to determine whether network path prediction techniques provide an accurate picture of the threat from such adversaries, and whether they can be used to avoid this threat. We perform a measurement study by running traceroutes from Tor relays to destinations around the Internet. We use the data to evaluate the accuracy of the autonomous systems and Internet exchanges that are predicted to appear on the path using state-of-the-art path inference techniques; we also consider the impact that prediction errors have on Tor security, and whether it is possible to produce a useful overestimate that does not miss important threats. Finally, we evaluate the possibility of using these predictions to actively avoid AS and IX adversaries and the challenges this creates for the design of Tor

    Population structure of Acrotrichis xanthocera (Matthews) (Coleoptera: Ptiliidae) in the Klamath Ecoregion of northwestern California, inferred from mitochondrial DNA sequence variation

    Get PDF
    The Klamath-Siskiyou Ecoregion of northern California and southern Oregon has extremely high biodiversity, but conservation centers on the protection of habitat for the northern spotted owl. A network of late successional reserves has been established without consideration of potential for protecting overall biodiversity, including genetic diversity. Mitochondrial DNA sequences are used to examine the population structure of Acrotrichis xanthocera (Coleoptera: Ptiliidae) sampled from five late successional reserves within the Klamath-Siskiyou Ecoregion and five comparison sites from northern California. Measures of gene flow, phylogenetic analysis, and nested clade analysis are employed to infer historical demographic and phylogeographic processes. Results show that A. xanthocera populations have undergone past range expansion, but gene flow is currently limited. Individual late successional reserves do not adequately protect the genetic variation in this species. Although further research is needed, these results are likely to be congruent for other edaphic arthropod species. Improvement of the late successional reserve system is warranted for maximum protection of the genetic diversity of soil arthropod populations
    • …
    corecore