435 research outputs found

    Comparing American soccer dialogues: social media commentary Surrounding the 2014 US men’s and 2015 US women’s World Cup teams

    Get PDF
    Mega sporting events such as the World Cup have been found to stimulate categorization of in-groups and out-groups among fans. While self-categorization correlates with gender, the sport of soccer also facilitates nationalistic categorization. The World Cup features nation vs. nation competition while making gender a non-variable as the men and women compete in separate tournaments in separate years. This study examined 33,529 tweets illustrating social media match commentary involving US teams and opponents on Twitter during the 2014 and 2015 World Cups. Results revealed US teams were more likely to be described in regard to attributions of success and failure, while opposition teams were more likely to receive personal and physical attributions. Conversely, no differences were found between US Men’s and Women’s teams in regard to characterizations of success and failure, but revealed the Women’s team was more likely to receive personal and physical characterizations

    Closing the Oxygen Mass Balance in Shallow Coastal Ecosystems

    Get PDF
    The oxygen concentration in marine ecosystems is influenced by production and consumption in the water column and fluxes across both the atmosphere-water and benthic-water boundaries. Each of these fluxes has the potential to be significant in shallow ecosystems due to high fluxes and low water volumes. This study evaluated the contributions of these three fluxes to the oxygen budget in two contrasting ecosystems, a Zostera marina (eelgrass) meadow in Virginia, U.S.A., and a coral reef in Bermuda. Benthic oxygen fluxes were evaluated by eddy covariance. Water column oxygen production and consumption were measured using an automated water incubation system. Atmosphere-water oxygen fluxes were estimated by parameterizations based on wind speed or turbulent kinetic energy dissipation rates. We observed significant contributions of both benthic fluxes and water column processes to the oxygen mass balance, despite the often-assumed dominance of the benthic communities. Water column rates accounted for 45% and 58% of the total oxygen rate, and benthic fluxes accounted for 23% and 39% of the total oxygen rate in the shallow (~ 1.5 m) eelgrass meadow and deeper (~ 7.5 m) reef site, respectively. Atmosphere-water fluxes were a minor component at the deeper reef site (3%) but a major component at the shallow eelgrass meadow (32%), driven by diel changes in the sign and strength of atmosphere-water gradient. When summed, the measured benthic, atmosphere-water, and water column rates predicted, with 85-90% confidence, the observed time rate of change of oxygen in the water column and provided an accurate, high temporal resolution closure of the oxygen mass balance

    Closing the Oxygen Mass Balance in Shallow Coastal Ecosystems

    Get PDF
    The oxygen concentration in marine ecosystems is influenced by production and consumption in the water column and fluxes across both the atmosphere-water and benthic-water boundaries. Each of these fluxes has the potential to be significant in shallow ecosystems due to high fluxes and low water volumes. This study evaluated the contributions of these three fluxes to the oxygen budget in two contrasting ecosystems, a Zostera marina (eelgrass) meadow in Virginia, U.S.A., and a coral reef in Bermuda. Benthic oxygen fluxes were evaluated by eddy covariance. Water column oxygen production and consumption were measured using an automated water incubation system. Atmosphere-water oxygen fluxes were estimated by parameterizations based on wind speed or turbulent kinetic energy dissipation rates. We observed significant contributions of both benthic fluxes and water column processes to the oxygen mass balance, despite the often-assumed dominance of the benthic communities. Water column rates accounted for 45% and 58% of the total oxygen rate, and benthic fluxes accounted for 23% and 39% of the total oxygen rate in the shallow (~ 1.5 m) eelgrass meadow and deeper (~ 7.5 m) reef site, respectively. Atmosphere-water fluxes were a minor component at the deeper reef site (3%) but a major component at the shallow eelgrass meadow (32%), driven by diel changes in the sign and strength of atmosphere-water gradient. When summed, the measured benthic, atmosphere-water, and water column rates predicted, with 85-90% confidence, the observed time rate of change of oxygen in the water column and provided an accurate, high temporal resolution closure of the oxygen mass balance

    Over-expression of copper/zinc superoxide dismutase in the median preoptic nucleus attenuates chronic angiotensin II-induced hypertension in the rat.

    Get PDF
    The brain senses circulating levels of angiotensin II (AngII) via circumventricular organs, such as the subfornical organ (SFO), and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO) have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s) involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2·-) scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·- in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD) or control vector (AdEmpty) were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Rats over-expressing CuZnSOD (n = 7) in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9). These results support the hypothesis that production of O2·- in the MnPO contributes to the development of chronic AngII-dependent hypertension

    Ebullition of Oxygen From Seagrasses Under Supersaturated Conditions

    Get PDF
    Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m-2 h-1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m-2 d-1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem-scale estimates. Oxygen content comprised 20-40% of the captured bubble gas volume and correlated negatively with its ÎŽ18O values, consistent with a predominance of mixing between the higher ÎŽ18O of atmospheric oxygen in equilibrium with seawater and the lower ÎŽ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here

    Redox-Sensitive Calcium/Calmodulin-Dependent Protein Kinase IIα in Angiotensin II Intra-Neuronal Signaling and Hypertension

    Get PDF
    Dysregulation of brain angiotensin II (AngII) signaling results in modulation of neuronal ion channel activity, an increase in neuronal firing, enhanced sympathoexcitation, and subsequently elevated blood pressure. Studies over the past two decades have shown that these AngII responses are mediated, in part, by reactive oxygen species (ROS). However, the redox-sensitive target(s) that are directly acted upon by these ROS to execute the AngII pathophysiological responses in neurons remain unclear. Calcium/calmodulin-dependent protein kinase II (CaMKII) is an AngII-activated intra-neuronal signaling protein, which has been suggested to be redox sensitive as overexpressing the antioxidant enzyme superoxide dismutase attenuates AngII-induced activation of CaMKII. Herein, we hypothesized that the neuronal isoform of CaMKII, CaMKII-alpha (CaMKIIα), is a redox-sensitive target of AngII, and that mutation of potentially redox-sensitive amino acids in CaMKIIα influences AngII-mediated intra-neuronal signaling and hypertension. Adenoviral vectors expressing wild-type mouse CaMKIIα (Ad.wtCaMKIIα) or mutant CaMKIIα (Ad.mutCaMKIIα) with C280A and M281V mutations were generated to overexpress either CaMKIIα isoform in mouse catecholaminergic cultured neurons (CATH.a) or in the brain subfornical organ (SFO) of hypertensive mice. Overexpressing wtCaMKIIα exacerbated AngII pathophysiological responses as observed by a potentiation of AngII-induced inhibition of voltage-gated

    Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide

    Get PDF
    Angiotensin II (AngII) is the main effector peptide of the renin-angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2 (‱-)). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2 (‱-). We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2 (‱-) scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2 (‱-). Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2 (‱-) levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2 (‱-), and inhibits AngII intra-neuronal signaling

    Ebullition of oxygen from seagrasses under supersaturated conditions

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Sutherland, K., Wankel, S. D., Burdige, D. J., & Zimmerman, R. C. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnology and Oceanography, (2019), doi:10.1002/lno.11299.Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m−2 h−1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m−2 d−1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem‐scale estimates. Oxygen content comprised 20–40% of the captured bubble gas volume and correlated negatively with its ÎŽ18O values, consistent with a predominance of mixing between the higher ÎŽ18O of atmospheric oxygen in equilibrium with seawater and the lower ÎŽ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here.Two anonymous reviewers provided thoughtful contributions that improved this manuscript. We thank Miraflor Santos, Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1633951 (to MHL) and 1635403 (to RCZ and DJB), NASA Fellowship NESSF NNX15AR62H (to KS), and a fellowship from the Hansewissenschaftskolleg (Institute for Advanced Studies; to SDW)
    • 

    corecore