4 research outputs found

    Deposition and Release of Graphene Oxide Nanomaterials Using a Quartz Crystal Microbalance

    No full text
    Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration and in NaCl, CaCl<sub>2</sub>, and MgCl<sub>2</sub> as a function of ionic strength (IS). Under favorable conditions (PLL-coated positive surface), GO deposition rates increased with GO concentration, as expected from colloidal theory. Increased NaCl concentration resulted in a greater deposition attachment efficiency of GO on the silica surface, indicating that deposition of GO follows Derjaguin–Landau–Verwey–Overbeek (DLVO) theory; GO deposition rates decreased at high IS, however, due to large aggregate formation. GO critical deposition concentration (CDC) on the silica surface is determined to be 40 mM NaCl which is higher than the reported CDC values of fullerenes and lower than carbon nanotubes. A similar trend is observed for MgCl<sub>2</sub> which has a CDC value of 1.2 mM MgCl<sub>2</sub>. Only a minimal amount of GO (frequency shift <2 Hz) was deposited on the silica surface in CaCl<sub>2</sub> due to the bridging ability of Ca<sup>2+</sup> ions with GO functional groups. Significant GO release from silica surface was observed after adding deionized water, indicating that GO deposition is reversible. The release rates of GO were at least 10-fold higher than the deposition rates under similar conditions indicating potential high release and mobility of GO in the environment. Under favorable conditions, a significant amount of GO was released which indicates potential multilayer GO deposition. However, a negligible amount of deposited GO was released in CaCl<sub>2</sub> under favorable conditions due to the binding of GO layers with Ca<sup>2+</sup> ions. Release of GO was significantly dependent on salt type with an overall trend of NaCl > MgCl<sub>2</sub> > CaCl<sub>2</sub>

    Mechanisms of Gadographene-Mediated Proton Spin Relaxation

    No full text
    Gd­(III) associated with carbon nanomaterials relaxes water proton spins at an effectiveness that approaches or exceeds the theoretical limit for a single bound water molecule. These Gd­(III)-labeled materials represent a potential breakthrough in sensitivity for Gd­(III)-based contrast agents used for magnetic resonance imaging (MRI). However, their mechanism of action remains unclear. A gadographene library encompassing GdCl<sub>3</sub>, two different Gd­(III) complexes, graphene oxide (GO), and graphene suspended by two different surfactants and subjected to varying degrees of sonication was prepared and characterized for their relaxometric properties. Gadographene was found to perform comparably to other Gd­(III)–carbon nanomaterials; its longitudinal (<i>r</i><sub>1</sub>) and transverse (<i>r</i><sub>2</sub>) relaxivity are modulated between 12–85 mM<sup>–1</sup> s<sup>–1</sup> and 24–115 mM<sup>–1</sup> s<sup>–1</sup>, respectively, depending on the Gd­(III)–carbon backbone combination. The unusually large relaxivity and its variance can be understood under the modified Florence model incorporating the Lipari–Szabo approach. Changes in hydration number (<i>q</i>), water residence time (τ<sub>M</sub>), molecular tumbling rate (τ<sub>R</sub>), and local motion (τ<sub>fast</sub>) sufficiently explain most of the measured relaxivities. Furthermore, results implicated the coupling between graphene and Gd­(III) as a minor contributor to proton spin relaxation

    Graphene Oxide Enhances Cellular Delivery of Hydrophilic Small Molecules by Co-incubation

    No full text
    The delivery of bioactive molecules into cells has broad applications in biology and medicine. Polymer-modified graphene oxide (GO) has recently emerged as a <i>de facto</i> noncovalent vehicle for hydrophobic drugs. Here, we investigate a different approach using native GO to deliver hydrophilic molecules by co-incubation in culture. GO adsorption and delivery were systematically studied with a library of 15 molecules synthesized with Gd(III) labels to enable quantitation. Amines were revealed to be a key chemical group for adsorption, while delivery was shown to be quantitatively predictable by molecular adsorption, GO sedimentation, and GO size. GO co-incubation was shown to enhance delivery by up to 13-fold and allowed for a 100-fold increase in molecular incubation concentration compared to the alternative of nanoconjugation. When tested in the application of Gd(III) cellular MRI, these advantages led to a nearly 10-fold improvement in sensitivity over the state-of-the-art. GO co-incubation is an effective method of cellular delivery that is easily adoptable by researchers across all fields

    Use of a Pro-Fibrogenic Mechanism-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials

    No full text
    Engineered carbonaceous nanomaterials (ECNs), including single-wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO), are potentially hazardous to the lung. With incremental experience in the use of predictive toxicological approaches, seeking to relate ECN physicochemical properties to adverse outcome pathways (AOPs), it is logical to explore the existence of a common AOP that allows comparative analysis of broad ECN categories. We established an ECN library comprising three different types of SWCNTs, graphene, and graphene oxide (two sizes) for comparative analysis according to a cell-based AOP that also plays a role in the pathogenesis of pulmonary fibrosis. SWCNTs synthesized by Hipco, arc discharge and Co–Mo catalyst (CoMoCAT) methods were obtained in their as-prepared (AP) state, following which they were further purified (PD) or coated with Pluronic F108 (PF108) or bovine serum albumin (BSA) to improve dispersal and colloidal stability. GO was prepared as two sizes, GO-small (S) and GO-large (L), while the graphene samples were coated with BSA and PF108 to enable dispersion in aqueous solution. <i>In vitro</i> screening showed that AP- and PD-SWCNTs, irrespective of the method of synthesis, as well as graphene (BSA) and GO (S and L) could trigger interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) production in myeloid (THP-1) and epithelial (BEAS-2B) cell lines, respectively. Oropharyngeal aspiration in mice confirmed that AP-Hipco tubes, graphene (BSA-dispersed), GO-S and GO-L could induce IL-1β and TGF-β1 production in the lung in parallel with lung fibrosis. Notably, GO-L was the most pro-fibrogenic material based on rapid kinetics of pulmonary injury. In contrast, PF108-dispersed SWCNTs and -graphene failed to exert fibrogenic effects. Collectively, these data indicate that the dispersal state and surface reactivity of ECNs play key roles in triggering a pro-fibrogenic AOP, which could prove helpful for hazard ranking and a proposed tiered testing approach for large ECN categories
    corecore