123 research outputs found

    A Common Dataset for Genomic Analysis of Livestock Populations

    Get PDF
    Although common datasets are an important resource for the scientific community and can be used to address important questions, genomic datasets of a meaningful size have not generally been available in livestock species. We describe a pig dataset that PIC (a Genus company) has made available for comparing genomic prediction methods. We also describe genomic evaluation of the data using methods that PIC considers best practice for predicting and validating genomic breeding values, and we discuss the impact of data structure on accuracy. The dataset contains 3534 individuals with high-density genotypes, phenotypes, and estimated breeding values for five traits. Genomic breeding values were calculated using BayesB, with phenotypes and de-regressed breeding values, and using a single-step genomic BLUP approach that combines information from genotyped and un-genotyped animals. The genomic breeding value accuracy increased with increased trait heritability and with increased relationship between training and validation. In nearly all cases, BayesB using de-regressed breeding values outperformed the other approaches, but the single-step evaluation performed only slightly worse. This dataset was useful for comparing methods for genomic prediction using real data. Our results indicate that validation approaches accounting for relatedness between populations can correct for potential overestimation of genomic breeding value accuracies, with implications for genotyping strategies to carry out genomic selection programs

    Genotype imputation for the prediction of genomic breeding values in non-genotyped and low-density genotyped individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is wide interest in calculating genomic breeding values (GEBVs) in livestock using dense, genome-wide SNP data. The general framework for genomic selection assumes all individuals are genotyped at high-density, which may not be true in practice. Methods to add additional genotypes for individuals not genotyped at high density have the potential to increase GEBV accuracy with little or no additional cost. In this study a long haplotype library was created using a long range phasing algorithm and used in combination with segregation analysis to impute dense genotypes for non-genotyped dams in the training dataset (S1) and for non-genotyped or low-density genotyped individuals in the prediction dataset (S2), using the 14<sup>th</sup> QTL-MAS Workshop dataset. Alternative low-density scenarios were evaluated for accuracy of imputed genotypes and prediction of GEBVs.</p> <p>Results</p> <p>In S1, females in the training population were not genotyped and prediction individuals were either not genotyped or genotyped at low-density (evenly spaced at 2, 5 or 10 Mb). The proportion of correctly imputed genotypes for training females did not change when genotypes were added for individuals in the prediction set whereas the number of correctly imputed genotypes in the prediction set increased slightly (S1). The S2 scenario assumed the complete training set was genotyped for all SNPs and the prediction set was not genotyped or genotyped at low-density. The number of correctly imputed genotypes increased with genotyping density in the prediction set. Accuracy of genomic breeding values for the prediction set in each scenario were the correlation of GEBVs with true breeding values and were used to evaluate the potential loss in accuracy with reduced genotyping. For both S1 and S2 the GEBV accuracies were similar when the prediction set was not genotyped and increased with the addition of low-density genotypes, with the increase larger for S2 than S1.</p> <p>Conclusions</p> <p>Genotype imputation using a long haplotype library and segregation analysis is promising for application in sparsely-genotyped pedigrees. The results of this study suggest that dense genotypes can be imputed for selection candidates with some loss in genomic breeding value accuracy, but with levels of accuracy higher than traditional BLUP estimated breeding values. Accurate genotype imputation would allow for a single low-density SNP panel to be used across traits.</p

    Microbiome‑driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions

    Get PDF
    BACKGROUND: Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS: This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of −0.41±0.12 sd. CONCLUSION: This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01352-6

    Potential of genotyping-by-sequencing for genomic selection in livestock populations

    Get PDF
    International audienceBackground Next-generation sequencing techniques, such as genotyping-by-sequencing (GBS), provide alternatives to single nucleotide polymorphism (SNP) arrays. The aim of this work was to evaluate the potential of GBS compared to SNP array genotyping for genomic selection in livestock populations.MethodsThe value of GBS was quantified by simulation analyses in which three parameters were varied: (i) genome-wide sequence read depth (x) per individual from 0.01x to 20x or using SNP array genotyping; (ii) number of genotyped markers from 3000 to 300 000; and (iii) size of training and prediction sets from 500 to 50 000 individuals. The latter was achieved by distributing the total available x of 1000x, 5000x, or 10 000x per genotyped locus among the varying number of individuals. With SNP arrays, genotypes were called from sequence data directly. With GBS, genotypes were called from sequence reads that varied between loci and individuals according to a Poisson distribution with mean equal to x. Simulated data were analyzed with ridge regression and the accuracy and bias of genomic predictions and response to selection were quantified under the different scenarios.ResultsAccuracies of genomic predictions using GBS data or SNP array data were comparable when large numbers of markers were used and x per individual was ~1x or higher. The bias of genomic predictions was very high at a very low x. When the total available x was distributed among the training individuals, the accuracy of prediction was maximized when a large number of individuals was used that had GBS data with low x for a large number of markers. Similarly, response to selection was maximized under the same conditions due to increasing both accuracy and selection intensity.ConclusionsGBS offers great potential for developing genomic selection in livestock populations because it makes it possible to cover large fractions of the genome and to vary the sequence read depth per individual. Thus, the accuracy of predictions is improved by increasing the size of training populations and the intensity of selection is increased by genotyping a larger number of selection candidates

    Correction:Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions

    Get PDF
    BACKGROUND: Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS: This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of −0.41±0.12 sd. CONCLUSION: This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01352-6

    The 3rd Fermi GBM Gamma-Ray Burst Catalog: The First Six Years

    Get PDF
    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two gamma-ray bursts (GRB) every three days. Here we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years, through the middle of July 2014. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300~keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBM's low-energy NaI(Tl) detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fitted by a two-component model with short-hard and long-soft bursts, than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).Comment: 225 pages, 13 figures and 8 tables. Accepted for publication in Astrophysical Journal Supplement 201
    • 

    corecore