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RESEARCH

Microbiome‑driven breeding strategy 
potentially improves beef fatty acid profile 
benefiting human health and reduces methane 
emissions
Marina Martínez‑Álvaro1*, Jennifer Mattock2, Marc Auffret3, Ziqing Weng4, Carol‑Anne Duthie1, 
Richard J. Dewhurst1, Matthew A. Cleveland4, Mick Watson2 and Rainer Roehe1 

Abstract 

Background:  Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to 
increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function 
provides a permanent and accumulative solution, which may have also favourable consequences in other traits of 
interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored.

Results:  This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic 
influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary 
health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hyper‑
cholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that 
~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the 
rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically 
correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence 
on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohy‑
drogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than 
CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the 
opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These 
microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and trans‑
port (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera 
within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these 
microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 
and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-
driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry 
matter intake), we obtained a correlated mitigation response of −0.41±0.12 sd.
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Background
The human diet in industrialized countries is 
characterized by high amounts of hypercholesterolemic 
saturated fatty acids (C12:0, C14:0 and C16:0) [1–4], 
and low amounts of n-3 fatty acids [1], which prevent 
cardiovascular diseases [5] and have additional anti-
inflammatory properties [6].  Beef contains more 
saturated fatty acids compared to pig or chicken 
meats  [7, 8],  explained by lipolysis and subsequent 
biohydrogenation of ingested UFA by the rumen 
microbiota.  Assuming no marine supplements in the 
diet, the accumulation of long chain n-3 fatty acids in the 
muscle depends on the flux of C18:3n-3 biohydrogenation 
in the rumen and on the rate of C18:3n-3 endogenous 
elongation and desaturation [9] into very long chain n-3 
(C20:5n-3, C22:5n-3, C22:6n-3) in body tissues through 
the action of very-long-chain fatty acid elongase and fatty 
acyl desaturase enzymes [10]. On the other hand, foods 
derived from ruminants account for more than 90% [11] 
of the total cis-9, trans-11 C18:2 intake in the human 
diet, a very valuable molecule associated with major 
beneficial health effects (e.g. antitumor, antidiabetic, 
anti-inflammatory and anti-atherosclerotic properties) 
[7, 12, 13]. The content of cis-9, trans-11 C18:2 in the 
body fats of ruminants derives from two sources: first, 
from endogenous synthesis via the enzymatic activity of 
stearyl-CoA desaturase [9, 14, 15], its concentration being 
related to the higher rumen efflux of trans-11 C18:1 and 
second, from the direct absorption of cis-9, trans-11 C18:2 
from the duodenum, which is mainly produced in the 
first step of biohydrogenation of C18:2n-6 in the rumen, 
provided that further conversion to other C18:0 isomers is 
avoided [15, 16]. Therefore, healthier ruminant products 
can be achieved by adequate manipulation of the rumen 
microbiota aiming at reducing the final step of cis-9, 
trans-11 C18:2 [17] biohydrogenation and increasing the 
bypass of C18:3n-3 [18], trans-11 C18:1 and cis-9, trans-
11 C18:2 flux to the muscle.

Lipolysis activity (by lipases, phospholipases (A,C [19]), car-
boxylesterases and esterases [20, 21]) and biohydrogenation 
activity (e.g. by linoleate isomerases [15, 19] and octadienoate 
reductases) in the rumen is mainly performed by bacteria, 
as a defence against a toxic challenge [22]. As an example, 
Anaerovibrio lipolytica [23] hydrolyses triacylglycerol, and 

Butyrivibrio-like species hydrolyse phospholipids and galac-
tolipids, and also play biohydrogenation activity (e.g. Butyrivi-
brio fibrisolvens [24–26] and Butyrivibrio proteoclasticus 
[19]), forming cis-9, trans-11 C18:2 as an intermediate in the 
process [27]. The list of microorganisms with biohydrogena-
tion or lipolytic activity in the rumen has now expanded to 
include species from the genera Pseudomonas, Vibrio, Sal-
monella, Aeromonas, Serratia [20, 21, 28], Propionibacterium 
[19], Treponema [29], Bacillus and Clostridium [30], among 
others. Lipolysis activity of protozoa also occurs in the rumen 
to a lesser extent [31, 32], but nevertheless significantly affects 
the flow of unsaturated fatty acids reaching the duodenum 
[33] and has been recently linked to the fatty acid profile of 
milk [34]. Similarly, anaerobic rumen fungi perform biohy-
drogenation, but the activity is negligible compared to that of 
Butyrivibrio fibrisolvens [35, 36].

Lipolytic and biohydrogenative patterns in the rumen 
can be modified by inducing changes in the composi-
tion of the microbiota through dietary strategies (poly-
unsaturated fatty acid (P-UFA) intake or antimicrobial 
feed additives) [37–39]. In some cases, the success of 
these strategies may be compromised by the adaptation 
of the microbiota to the new environment [40] or nega-
tive effects on the sensory quality of the product [41]. In 
addition to dietary strategies, breeding-induced changes 
in the composition of the rumen microbiome could lead 
to permanent changes accumulated over generations of 
selection, as the animal’s genome influences part of the 
microbial colonization and function [42–53]. Modifica-
tion of lipolysis and biohydrogenation of dietary lipids by 
this strategy has never been explored, but holds promise 
because the microbial functions and taxa associated are 
very sensitive [22, 54] to host characteristics influenced 
by host genomic factors (e.g. epithelial absorption of VFA 
affecting pH [46] or passaging rates [43]). In our previous 
study [53], we showed how genomic selection based on a 
subset of additive log-ratio transformed microbial gene 
abundances (alr-MG) can achieve a reduction in meth-
ane (CH4) emissions even greater than that achieved with 
the measured trait in respiration chambers, avoiding the 
high cost. A larger number of microbial functions showed 
a strong correlation to CH4 emissions in comparison to 
microbial taxa at the genus level and is therefore more 
informative as a selection criterion [53].

Conclusion:  This research provides insight on the possibility of using the ruminal functional microbiome as informa‑
tion for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in 
this study exemplified with meat quality traits and methane emissions.

Keywords:  Rumen microbiome, Beef, Conjugated linoleic acid, Very long-chain n-3 fatty acids, Microbial genes, 
Microbiome-driven breeding, Genomic selection, Methane emissions
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Targeting one microbial activity is likely to have con-
sequences for others, although the secondary effects 
may not necessarily be detrimental. In nutritional stud-
ies, a substantial overlap has been observed between the 
inhibitory effects of long-chain poly-UFA on biohydro-
genation and methanogenesis [39, 55, 56]. Also, micro-
bial metabolic pathways that simultaneously affect fatty 
acid biohydrogenation and methanogenesis are likely to 
have a host genetic component, as shown by a divergent 
selection experiment for methane emissions in sheep, 
in which it was observed that the low-methane yield 
line had greater levels of fatty acids associated with the 
early stages of rumen biohydrogenation, such as cis-9, 
trans-11 C18:2 and trans-11 C18:1 [57]. Livestock con-
tributes ~8–12% of anthropogenic emissions [58, 59], 
with one main contributor being enteric CH4 emis-
sions from ruminants, which have a warming potential 
28 times greater than CO2 [58], despite CH4 remaining 
in the atmosphere for much less time (12 versus >100 
years) [60]. The beef industry faces the challenge of pro-
ducing high-quality products while minimising envi-
ronmental impact. Therefore, in this study, we extended 
our research by evaluating the impact of a microbiome-
driven breeding strategy for improved meat quality on 
host CH4 emissions.

Through an extensive identification of the functional 
rumen microbiome of 359 animals, the first objective 
of this study is to elucidate which host-genomically 
influenced functional mechanisms in the rumen are 
associated with N3 and CLA indices in beef, defined as 
the proportion of beneficial fatty acids (long chain n-3 
or cis-9, trans-11 C18:2 and trans-11 C18:1) in relation 
to hypercholesterolemic saturated fatty acids (C12:0, 
C14:0 and C16:0). To this objective, we are considering 
not only lipolytic/biohydrogenation activities but also 
other metabolic interdependencies (e.g. H2 metabolism). 
The second objective was to design a microbiome 
breeding strategy based on these microbial functions 
that, optimally, can simultaneously increase N3 and 
CLA indices in beef. The third objective was to evaluate 
the impact of this microbiome-driven breeding strategy 
on part of the environmental footprint of ruminants, 
measured as their CH4 emissions.

Results
Fatty acid indices are controlled by the host genome
Our research focuses on the development of a 
microbiome-driven breeding strategy to improve beef 
quality by increasing the content of long chain n-3 fatty 
acids (C18:3n-3, C20:5n-3, C22:5n-3 and C22:6n-3), cis-
9, trans-11 C18:2 and trans-11 C18:1 in beef in relation to 
the content of hypercholesterolemic saturated fatty acids 
(C12:0, C14:0 and C16:0). For this purpose, we propose 

the N3 index calculated as the natural log of (C18:3n-3 
+ C20:5n-3 + C22:5n-3 + C22:6n-3)/(C12:0 + C14:0 + 
C16:0) and the CLA index calculated as the natural log of 
(cis-9, trans-11 C18:2 + trans-11 C18:1)/(C12:0 + C14:0 
+ C16:0) as breeding goal traits (Figure S1).

Substantial phenotypic variation between animals 
in N3 and CLA indices was due to variability in their 
estimated host genomic breeding values. Both traits 
exhibited high heritabilities (h2) (h2

N3=0.76±0.16 and 
h2

CLA=0.57±0.17) with strong statistical evidence for 
host genomic effects. This strong statistical evidence was 
ascertained by large Bayes Factors (BF) (1.81 × 10+6 for 
N3 and 5.55 × 10+6 for CLA) and large deviance infor-
mation criterion differences between models with and 
without host genomic effects (DICdiff) (−320 for N3 and 
−129 for CLA). Despite the drawbacks associated with 
considering ratio traits as a breeding objective [61], fatty 
acid indices were used in this study because (1) they 
were adequately analysed considering the compositional 
nature of fatty acid data and (2) their biological implica-
tions and high h2 values provide key information about 
how the host genes affecting meat quality influence the 
rumen microbial metabolism of dietary lipids. In addi-
tion, our results suggest that a simultaneous increase 
of N3 and CLA indices in beef is favoured by their esti-
mated positive host genomic correlation (rgN3, CLA=0.39, 
with probability of being different from 0 (P0) = 0.93).

Microbial genes directly involved in lipolytic 
and biohydrogenation activity of dietary lipids 
in the rumen appear to be beyond the influence of the host 
genome
To identify the part of the functional core microbi-
ome (n=3631 alr-MGs with ≥70% occupancy) which 
was host-genomically influenced with strong evidence, 
we estimated the h2 of the alr-MGs and tested the sig-
nificance of their host genomic effects by calculating 
the DICdiff and BF. A joined condition of DICdiff < −20 
and BF > 14.5 was required to consider a host genomic 
influence on the abundance of each alr-MG. Our results 
indicate that 27.6% of the functional core microbiome 
(1002/3631 alr-MGs tested) is, at least, moderately her-
itable (h2 ranging from 0.20 to 0.58); the 1002 alr-MGs 
numerators together accounting for ~14% of the total 
relative abundance in the rumen (Fig. 1A and Table S1). 
This group of 1002 alr-MGs, advantageous for genomic 
selection, were referred to as the host-genomically influ-
enced functional core microbiome (HGFC).

Only three alr-MGs encoding lipolytic activity on 
dietary lipids were part of the functional core micro-
biome (≥70% occupancy); triacylglycerol lipase (lip), 
phospholipase A2/A1 (pldA) and carboxylesterase 
(yvaK) [20]. Their h2 estimates were in the range of 



Page 4 of 21Martínez‑Álvaro et al. Microbiome          (2022) 10:166 

0.16–0.22 and only pldA (h2=0.22[0.00, 0.48]) was con-
sidered part of the HGFC (Table S2). Other alr-MGs 
encoding enzymes with biohydrogenation activity (very 
long-chain enoyl-CoA reductase, alcohol-forming fatty 
acyl-CoA reductase, delta24-sterol reductase, and acyl-
lipid n-6 desaturase) were found in our database with 
a low occupancy rate (≤ 50% of animals) and were not 
considered part of the functional core microbiome. In 
contrast, alr-MGs involved in essential pathways, e.g. 
proteolysis and amino acid transport (e.g. aroF and 
serA), carbohydrate fermentation (galT) and transport 
(e.g. msmX) [62] or cell wall biosynthesis (e.g. lpxB, 
lpxA, lptA) were found to be heritable with an aver-
age h2 when classified within functional COGs around 
~0.29 and HPD95% of [0.2, 0.4] (Fig.  1B). Interestingly, 
the alr-MGs with the highest h2 in the rumen were 
related to signal transduction mechanisms (e.g. glnB in 

two-component system) and to vitamin B6 metabolism 
(pdxT), with h2 equal to 0.58 (Table S1).

HGFC is associated to CLA and N3 indices in beef
Although alr-MGs directly involved in lipolytic and bio-
hydrogenation activity appear to be not strongly influ-
enced by the host genome, their metabolism has a strong 
interdependence (or present correlated responses) with 
other metabolic pathways, particularly those regulating H2 
metabolism (e.g. carbohydrate degradation or microbial 
protein synthesis) [62], which were strongly influenced by 
the host genome. In our study, 372 of the 1002 alr-MGs 
comprising the HGFC were found to be involved in micro-
bial metabolic pathways associated with N3 and/or CLA 
indices, as demonstrated by their strong host genomic cor-
relations with either N3 (290 alr-MGs), CLA (66 alr-MGs) 
or both (16 alr-MGs) with P0 ≥ 0.95 (Table S3).

Fig. 1  Host-genomically influenced functional core microbiome (HGFC) in the rumen of cattle identified as additive log-ratio transformed microbial 
gene abundances (alr-MGs) with ≥ 70% occupancy across animals and highly probable host genomic effects. A Number of alr-MGs and summed 
cumulative relative abundance of alr-MGs numerators comprehending the HGFC in our population. B Violin plots represent the distribution of 
heritability estimates for the 1002 HGFC alr-MGs, classified by COG functional modules of the numerators, represented by different colors. Full COG 
names are described in Table S11
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Our results suggest that the metabolism of amino acids 
and carbohydrates is potentially increased in the rumen 
of those hosts genetically determined to have a high N3 
index. This is indicated by the strong and positive rgN3 
(ranging from 0.53 to 0.87, P0≥0.95) estimated for the 
abundance of alr-MGs associated with the biosynthesis 
of phenylalanine, tyrosine and tryptophan (aroF, aroD, 
enr, pheB), metabolism of glycine, serine and threonine 
(gcvPB, serA, thrH, grdD), alanine (gltD, TC.AGCS, alr, 
yafV), thiamine (iscS, tenA, thiD, thiI) and cysteine and 
methionine (E4.4.1.11, gshA, serA, speE, GTK), ATP-
binding cassette transporters of methionine (metN, metI, 
metQ) and the glutamate transport system (gluD). In 
addition, we also estimated strong and positive rgN3 for 
the abundance of alr-MG involved in putative aldouro-
nate (lplA) and multiple sugar ABC transport systems 
(msmX, ABC.MS.P1, ABC.MS.P, ABC.MS.S), metabo-
lism of fructose and mannose (srlA, srlB, fruA), starch 
and sucrose (glgC, E2.4.1.4, celF), galactose (galT, gatB, 
sacA. malL) and ascorbate and aldarate (ulaA, lyxK). 
CLA index was also related to amino acid and carbo-
hydrate metabolism, as we estimated strong positive or 
negative rgCLA (from |0.53| to |0.81|, P0≥0.95) with spe-
cific alr-MGs on these metabolic pathways, but lower 
in number. For example, glxK in the metabolism of gly-
cine, serine and threonine, ardD and hyuA of arginine, 
cap1J of ascorbate and aldarate, celC and glgA of starch 
and sucrose, glf in galactose, or pgi and tpiA in glycoly-
sis. Along with amino acid and carbohydrate metabolism, 
two microbial processes in HGFC were strongly associ-
ated with both N3 and CLA indices (Table S3). The first is 
translation, ribosomal biogenesis and transcription, with 
positive or negative rg with N3 (ybak, cca, cggR, hrpB, 
yedL, yafQ, fliA, parD1, rgN3 =|0.46| to |0.81|, P0≥0.95) 
and CLA indices (RP-S21, RP-S19, RP-L35, agar, tfoS, 
rgCLA =|0.62| to |0.78|, P0≥0.96). This result could reflect 
the modulation of microbial growth [63] in the presence 
or absence of specific long chain n-3 fatty acid and cis-9, 
trans-11 C18:2 intermediates in the rumen [24]. The sec-
ond microbial process is the metabolism of coenzymes, 
specifically folate, with e.g. folC and pabBC associated 
positively with CLA (rgCLA=0.66 and 0.64, P0=0.96), and 
folk, folP, folB, and folE associated negatively with N3 
(rgN3 from −0.55 to −0.62, P0>0.96); or the metabolism 
of riboflavin (ribE, ribH, yscE), porphyrin (cobN, pduO), 
and pantothenate and CoA (coaW, poK), in which dif-
ferent alr-MGs were detrimental to both indices N3 
(ribE, ribH, coaW, cobH and pduO showed rgN3=−0.54 
and −0.69, P0>0.96) and CLA (yscE, pok, cobN showed 
rgCLA=−0.73, −0.65 and −0.70, P0>0.96).

Another functional alr-MG group of the HGFC that 
was host-genomically correlated strongly with N3 index 
is linked to the biosynthesis of several metabolites of 

bacterial origin that function as cell membrane compo-
nents: peptidoglycans (pbpA, spoVD, dgkA, murT, vanY), 
glycerophospholipids (pgsA, tagD, pldB), lipopolysac-
charides (kdsA, kdsB, kdsD, lpxD, lpxB, lpxA, lptA, kdtA, 
eptA), lipoproteins (lptE, rlpA) and amino sugars and 
nucleotide sugars (uxs). Whereas alr-MGs involved in the 
biosynthesis of the first two cell wall components were 
positively correlated with the N3 index (rgN3 from 0.60 to 
0.80, P0≥0.97), the abundances of alr-MGs in lipopoly-
saccharides, lipoproteins, and amino sugars and nucleo-
tide sugars were negatively correlated (rgN3 from −0.43 
to −0.70, P0≥0.95). Microbial mechanisms involved in 
cell motility were also strongly negatively associated to 
N3, with 6 alr-MGs for flagellar assembly and chemo-
taxis (fliN, fliO, fliP, fliQ, flgB, flgM), and one for pilus 
biogenesis (mshG) presenting rgN3 from −0.47 to −0.72 
(P0≥0.96). Some of the abovementioned alr-MGs with 
strong rgN3 (e.g. uxs, pdpA, ahId, fliN, fliO, fliP, fliQ, flgB, 
flgM) were also host-genomically correlated with CLA 
index in the same direction as N3 index, but in lower 
magnitude and P0<0.95 (Table S3). To establish associa-
tions between microbial functions and the microbiota, 
we searched for the microbial genera identified in our 
animals carrying the largest number of the 372 identified 
alr-MGs according to KEGG database [64] (Fig.  2 and 
Table S4). Flagellar assembly alr-MGs involved either in 
the structural components or in the processing of envi-
ronmental signals by chemotaxis (fliN, fliO, fliP, fliQ, flgB, 
flgM) were found extensively in the genome of several 
genera from the Proteobacteria phylum, many of them 
with lipolytic/biohydrogenation activity (Pseudomonas, 
Vibrio, Aeromonas and Serratia) [20, 21, 28]. Moreover, 
gspG, gspK and gspJ, associated with biofilm formation 
in Vibrio and Pseudomonas species (also carried by other 
Proteobacteria, see Table S4) followed the same pattern 
(rgN3 from −0.58 to −0.69, P0≥0.96).

The influence of the host genome on the genera 
Anaerovibrio and Butyrivibrio and their genomic 
association with CLA and N3 indices
In our population, we investigated the influence of the 
host genome on the variation in abundance of the genera 
Anaerovibrio and Butyrivibrio (mean relative abundance 
of 0.15% and 2.54%), which are both well-known bacte-
ria involved in lipolytic and biohydrogenation activity on 
dietary lipids in the rumen [62, 65, 66]. Our results sug-
gest that the clr-transformed abundance of both genera 
were influenced by the host genome, but their h2 were 
low (h2=0.14 [0.00, 0.34] and h2=0.16 [0.00, 0.37], DICdiff 
= −6.41 and −9.65, BF = 76 and 163). Despite its low 
h2, the clr-transformed abundance of Anaerovibrio gen-
era was negatively host-genomically correlated with N3 
index (rgN3=−0.75, P0=0.99), whilst its rgCLA was lower 
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(−0.30, P0=0.73). In contrast, the clr-transformed abun-
dance of Butyrivibrio genus did not correlate strongly 
with the N3 or CLA indices, possibly because the abun-
dance of different Butyrivibrio species play different 
roles in relation to biohydrogenation [67]. To increase 
resolution, we used information of two different uncul-
tured Butyrivibrio strains (RUG14388 and RUG10859) 
identified at ≥70% occupancy in a subset our animals 
(n=282) by de novo metagenome-assembly of genomes 
[68]. Consistent with Butyrivibrio genus, their h2 val-
ues were low (h2=0.18 [0.00, 0.44] and 0.10 [0.00, 0.29], 
DICdiff = −10.5 and −0.63, BF = 53 and 5.91); but inter-
estingly, they showed different trends in their correla-
tions with fatty acids indices, supporting our hypothesis. 
Clr-RUG14388 was negatively correlated only with CLA 
(rgCLA = −0.82, P0=0.96) whilst clr-RUG10859 was 
strongly negatively correlated only with the N3 index 
(rgN3 = −0.82, P0=0.99).

CLA and N3 indices in beef are simultaneously increased 
when genomic selection of the HGFC is applied
One of the objectives of this study was to design a micro-
biome-driven breeding strategy based on the variability of 
the alr-MGs comprising the part of the HGFC that is host-
genomically correlated with N3 and CLA indices. Since we 
want to modify the microbial pathways that cause a simul-
taneous increase of both, we focused our research exclu-
sively on the 110 of the 372 alr-MGs that have the same 
sign in their host genomic correlations mean with N3 
(rgN3) and CLA (rgCLA) (Fig. 3A and Table S3).

As a first step, we analysed the phenotypic and host 
genomic correlation structure among the 110 alr-MGs 

in a co-abundance network based on phenotypic val-
ues (adjusted for fixed effects) and estimated genomic 
breeding values, respectively (Fig. 3B and C and Tables 
S5 and S6). Co-abundance networks are an accessible 
method that can shed light on ecological interactions 
[69] and potential keystones [70], although correlations 
may represent joint responses rather than direct inter-
actions. In our study, the phenotypic and host genomic 
networks were constituted by 7 and 6 clusters, respec-
tively, and both included three major co-abundance 
clusters (> 10 nodes or alr-MGs) with similar compo-
sition in both networks. Based on the host genomic 
network (Table S5 and Fig.  3B), alr-MGs in the same 
cluster are likely influenced by the same portion of the 
host genome. The three major clusters suggest a tight 
interaction or paired responses between alr-MGs 
in amino acid (aroF, serA, grD, gcvPB, tenA) and car-
bohydrate (pel, lyxK, cap1J, glf, galT, srlA, tpiA, gatB) 
metabolism and transport, folate (folE, folC) and pan-
tothenate and CoA (coaW) biosynthesis, porphyrin 
metabolism (cobC), ribosomal biosynthesis (RP-L35, 
RP-S19. RP-S21), or flagellar assembly (fliO, mshG, flgB, 
flgM). In a second step, we aimed to select the small-
est subset of alr-MGs that better explains the overall 
variability in the 110 alr-MGs suitable for breeding 
purposes. An imposed condition to include a alr-MG 
in our microbiome-driven breeding strategy was a 
minimum average relative abundance of the numerator 
MG across animals ≥0.01% (45 alr-MGs). Of these alr-
MGs, we discarded those with redundant contribution 
(based on a redundancy analysis [71]) to explain the 
total variance contained in the host genomic breeding 

Fig. 2  Microbial genomes of genera from the Proteobacteria phylum highly enriched in microbial genes genomically correlated with N3 and CLA 
indices. The number of microbial genes present in each microbial genus ranges from 70 (Desulfovibrio) to 96 (Vibrio) (see Table S4). Different colours 
represent different COG functional modules. Full COG names are described in Table S11
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values of the 110 alr-MGs abundances and retained 31 
alr-MGs that were significant (P values > 0.05, Fig. 3D 
and Table S7). The 31 selected alr-MGs covered most 
of the microbial processes highlighted in the discussion 
of this study and proportionately represented almost all 
clusters in the co-abundance network.

Finally, we evaluated the accuracies and responses 
to selection achieved simultaneously in N3 and CLA 
indices based on the estimation of their host genomic 
breeding values by exclusively using the 31 alr-MGs as 
selection information. As a benchmark, we computed 
the CLA and N3 indices host genomic breeding values 

Fig. 3  Study of 110 additive log-ratio transformed microbial gene abundances (alr-MGs) host-genomically influenced and correlated with 
N3 and CLA indices in the same direction. A Genomic correlations (RG) between alr-MGs and N3 and CLA indices in beef, classified by COG 
functional modules of the alr-MG numerators. Host genomic correlation estimates, and the names of the microbial genes are provided in Table 
S3. Co-abundance network analysis of B corrected phenotypic values or C estimated genomic breeding values for microbial gene abundances. 
Different colours indicate different clusters: 1 (green), 2 (orange) and 3 (blue). Edges correspond to the absolute Pearson correlation value between 
alr-MGs > l0.30l, and the thickness of the edges increases with the correlation size. The nodes represent alr-MGs and their size corresponds to the 
node degree (number of incident edges per node). D Thirty-one out of the 110 alr-MGs selected for breeding purposes classified along clusters and 
functions. Colours represent their position in the genomic co-abundance network analysis.
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by using CLA or N3 indices observed data as a selection 
information. The mean estimation accuracies of genomic 
breeding values in the microbiome-driven breed-
ing strategy were 0.65±0.027 for CLA and 0.65±0.028 
for N3. The accuracies were lower than when using 
measured CLA or N3 indices as selection information 
(0.74±0.02 and 0.80±0.02, respectively). The microbi-
ome-driven response to selection per generation in N3 
and CLA, achieved by selecting animals of the analysed 
population with the highest aggregated breeding value 
for the goal traits (N3 and CLA indices) ranged depend-
ing on the selection intensity (from 1.06 to 2.06) between 
0.57±0.08 and 1.36±0.24 phenotypic standard devia-
tions (sd) for the N3 index (equivalent to 3.8 and 9.01% 
of the mean) and between 0.39±0.07 and 0.79±0.21 sd 
for the CLA index (equivalent to 4.9 and 9.82% of the 
mean) (Fig. 4A). These results demonstrate that a micro-
biome-driven breeding strategy based on the part of the 
HGFC associated to CLA and N3 is a suitable strategy 
to simultaneously improve fatty acid composition in beef 
while avoiding costly measurements of fatty acid content 
in beef.

Mitigation of CH4 emissions is a consequence of genomic 
selection of the HGFC associated to CLA and N3 indices
Targeting one microbial activity to the fatty acid compo-
sition in beef may have consequences for other traits such 
as CH4 emissions. Therefore, we estimated host genomic 

correlations between CH4 emissions and the 31 alr-
MGs selected for the microbiome-breeding strategy to 
increase N3 and CLA (rgCH4, Table S8 and Fig. 5). Inter-
estingly, almost all of these alr-MG abundances showed 
rgCH4 values with opposite (and therefore favourable) 
signs compared to rgN3 and rgCLA, 7 of them with P0>0.95. 
Finally, we estimated the consequence that selection on 
the aggregated breeding value for the goal traits (N3 and 
CLA indices), estimated exclusively based on information 
of the 31 alr-MG abundances, will have on CH4 emis-
sions of the animals. This correlated response to selection 
on CH4 emissions ranged depending on selection inten-
sity (1.06 to 2.06) from −0.19±0.04 to −0.41±0.12 sd 
of the CH4 trait or 4 to 9.4% of the mean per generation 
(Fig. 4B).

Discussion
Variations in the hologenome to achieve improvement 
in production traits can be achieved by changes in either 
the host or microbiota genome [72]. In this study, we 
propose to apply host genomic selection targeting the 
microbial host-genomically influenced functional core 
microbiome in the rumen to approach a change in the 
hologenome towards an increased N3 and CLA indices 
in beef. Genomic selection requires the estimation of 
host genomic parameters, which we performed in this 
study using all genomic (386 samples), microbiome (359 
samples) and fatty acids (245 animals) data available to 

Fig. 4  Responses to selection in A N3 and CLA indices and B methane emissions (CH4, g/kg of dry matter intake) using the 31 additive log-ratio 
transformed microbial gene abundances (alr-MGs) as selection information (i.e., microbiome-driven breeding strategy). Responses to selection 
in CLA, N3 indices and CH4 emissions are estimated by selecting animals for their aggregate estimated breeding value for CLA and N3 (assuming 
equal economical weights) predicted using the 31 alr-MGs. Response is expressed in units of phenotypic standard deviations of the trait (SD)
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obtain the most reliable estimates [73]. Moreover, all 
phenotypic and host genomic estimates presented in 
this study were obtained after adjusting observed traits 
for diet and other systematic effects including their 
interactions to focus genetic improvement on fatty 
acid variation unaffected by dietary intervention. The 
diets used in the experiments of the present study did 
not aim to change the fatty acid composition of beef, 
but to analyse the effects of diets on CH4 emissions. If 
rumen microbiome profiles within each diet showed 
the same increase in the trait, as shown by Roehe et al. 
[51] for CH4 emissions, it is reasonable to expect that 
the change due to diet intervention and microbiome-
driven breeding would be additive. However, future 
specific dietary intervention experiments are needed to 
answer the question of whether the additivity of dietary 
intervention and microbiome-driven breeding also 
applies to the fatty acid profiles of beef.

We first investigated that ~28% of the ruminal func-
tional core microbiome (1002/3633 alr-MGs tested) 
presented moderate to high h2 ranging from 0.20 to 
0.58, which is sufficient to be efficiently targeted by host 
genomic selection. This result is similar to that obtained 
in our previous study [53] where 337/1141 or 29.5% of 
total alr-MGs identified in the rumen microbiome pre-
sented significant host genomic effects, with functional 
information now extended using an updated version of 
KEGG database and the bioinformatic KofamScan tool 
[74] (see the “Methods” section). The bacterial enzymes 
with lipolytic and biohydrogenation activity are well 
characterized in literature (e.g. lipases, phospholipases 

or isomerases) [15, 19–21]. In the same way, Anaer-
ovibrio lipolytica and Butyrivibrio-like species are 
well-known bacteria involved in lipolytic and biohydro-
genating activity on dietary lipids in the rumen [62, 65, 
66]. An important result in our study is that inter-host 
variation in the alr-transformed abundance of MGs 
with potential lipolytic and biohydrogenation activity, 
and in the clr-transofrmed abundance of Anaerovibrio 
and Butyrivibrio genera, is likely to be more influenced 
by environmental factors rather than host genomic 
factors, with h2 ≤ 0.10 and host genomic effects that 
did not surpassed the stringent multitest significance 
threshold. Microbial metabolism of dietary lipids is a 
defence and/or adaptation mechanism of certain sen-
sitive bacteria against UFA [15, 19, 22, 28, 35, 68, 75], 
but is not an essential activity of the microbial commu-
nity, as bacteria are able to synthesise their own fatty 
acids, mainly for the construction of their cell mem-
branes [76]. Instead, biohydrogenating and lipolytic 
activity appears to be a peripheral mechanism to the 
major growth-promoting activities, e.g. proteolysis and 
amino acid transport (e.g. aroF and serA), carbohydrate 
fermentation (galT) and carbohydrate transport (e.g. 
msmX) or cell wall biosynthesis (e.g. lpxB, lpxA, lptA), 
which was revealed to be under stronger host genomic 
influence (i.e. belonged to the HGFC).

In general, most metabolic processes in the rumen 
influence each other because of substrate interdepend-
ences, or because there are common metabolic pathways 
or common microbial species that carry out different 
processes, leading to joined responses. For example, 

Fig. 5  Host genomic correlations (Rg) between the 31 additive log-ratio transformed microbial gene abundances (alr-MGs) and CH4 (rgCH4), N3 
(rgN3) and CLA (rgCLA) indices. The vast majority are favourable across traits, which indicate that an increase of CLA and N3 indices by genomic 
selection of the microbial gene abundances reduces CH4 emissions. Bars represent means and highest posterior density interval at 95% probability. 
For full names of alr-MGs, see Table S8



Page 10 of 21Martínez‑Álvaro et al. Microbiome          (2022) 10:166 

Butyrivibrio fibrisolvens is a key player in fibre digestion, 
but many strains are also proteolytic and are involved in 
the biohydrogenation of fatty acids [77]. In our study, we 
found that N3 index in meat was strongly associated to 
306 host-genomically influenced alr-MGs, whilst CLA is 
also influenced by HGFC, but to a lesser extent (82 alr-
MGs). These results suggest that both N3 and CLA rely 
on HGFC microbial functions which indirectly regulate 
lipolysis and biohydrogenation rates in rumen. Addi-
tionally, these results highlight the possibility of apply-
ing genomic selection to the most informative alr-MG 
abundances in the HGFC to modify the fatty acid compo-
sition of meat by altering the flux of fatty acids available 
for intramuscular lipid accretion. The greater number 
of HGFC microbial functions linked to N3 than to CLA 
indicates that C18:3n-3 metabolism in rumen is sus-
ceptible to more diverse microbial actions than cis-9, 
trans-11 C18:2 and its precursors. This is in line with the 
higher dependence of N3 than CLA on the host genome 
(h2

N3=0.76±0.16 and h2
CLA=0.57±0.17).

The positive host genomic correlation between N3 and 
CLA estimated in this study (rgN3, CLA=0.39) indicates the 
possibility of achieving a simultaneous increase in both 
indices by using genomic selection tools. Host genetics 
promoting a low rate of metabolism of dietary C18:3n-3 
may also increase its concentration in the rumen, which 
is known from nutritional studies to impair survival of 
biohydrogenating bacteria [24], thereby improving the 
concentration of trans-11 C18:1 and cis-9, trans-11 C18:2 
potentially available to be stored into body tissues [41]. 
Also, our study deciphers further host-genomically influ-
enced microbial mechanisms that most likely contrib-
uted to the positive rgN3,CLA as shown by 110 alr-MGs 
influencing N3 and CLA indices in the same direction. 
The metabolism of amino acids (aroF, serA, glxK) and 
carbohydrates (gatB, ulaC, yihQ, galT) are part of these 
HGFC mechanisms, positively associated to both indi-
ces (Fig. 3A). Biohydrogenation is particularly dependent 
on the metabolism of H2 [62], which is produced during 
the fermentation of sugars and then used in a number of 
processes such as microbial protein synthesis. The mar-
ginal H2 required for biohydrogenation of dietary lipids 
[78], along with the H2 resulting from enhanced carbo-
hydrate metabolism in hosts with higher N3 and CLA, 
may be available for the synthesis of microbial proteins, 
most of which serve as amino acids for the host [79]. 
Dietary studies in which ruminants were fed with UFA 
also reported an increase in microbial protein synthesis, 
explained in part by defaunation [80–82], although inter-
actions between protein and lipid metabolism in rumi-
nants are far from being well understood. Another part of 
the HGFC mainly associated with N3,—but also to CLA 
index to some extent (see Fig.  3A)—was involved in the 

biosynthesis of several metabolites of bacterial origin that 
function as cell membrane components including pep-
tidoglycans (pbpA, spoVD), glycerophospholipids (tagD, 
pldB), lipopolysaccharides (kdsA, lpxD, lpxB), lipopro-
teins (lptE, rlpA) and amino and nucleotide sugars (uxs). 
Since biohydrogenation of long chain n-3 fatty acids is a 
bacterial detoxification mechanism, these findings may be 
related to the disruption that their double bonds cause in 
the lipid bilayer structure of the bacterial membrane [22, 
83]. On the other hand, an increased flux of lipopolysac-
charides derived from the cell wall of Gram-negative bac-
teria in the rumen has been reported to downregulate the 
expression of stearyl-CoA desaturase in the host liver [84], 
thereby decreasing C16:1n-9/C16:0 and cis-9, trans-11 
C18:2/trans-11 C18:1 desaturation indices in liver plasma 
[84]. The biosynthesis of lipopolysaccharides in the rumen 
could increase accumulation of C16:0 in the muscle, via 
the intestinal-liver axis or by inhibiting stearoyl-CoA 
desaturase expression in  situ [85], potentially contribut-
ing to the impairment of both indices. However, in our 
study, kdsA, lpxD and lpxB showed strong and negative 
rg with N3 but not with CLA index, which only partially 
supports this hypothesis. Another HGFC microbial pro-
cess associated in the same direction with both N3 and 
CLA indices was cell motility. This was suggested by 7 alr-
MGs involved either in the structural components or/and 
in the processing of environmental signals by chemotaxis 
(fliN, fliO, fliP, fliQ, flgB, flgM, mshG) and by 3 alr-MGs 
in biofilm formation (gspG, gspK and gspJ), all impacting 
negatively to healthy fatty acid indices in beef (see Fig. 3A). 
These alr-MGs were found extensively in the genome of 
several genera from the Proteobacteria phylum with lipo-
lytic/biohydrogenation activity (Pseudomonas, Vibrio, 
Aeromonas and Serratia) [20, 21, 28]. An increased ability 
of these Proteobacteria genera to respond to changes in 
the rumen environment and migrate toward more desir-
able conditions, as well as to interact with other micro-
bial communities [86], may favour their survival [87] and 
thus indirectly promote the metabolism of dietary lipids. 
Proteobacteria also produce acetate [88] (especially Ace-
tobacter, Kozaia, Asaia, Gluconobacter, Table S3), which 
is the major precursor of de novo lipogenesis in rumi-
nant adipose tissue [89]. The primary de novo lipogenesis 
product is C16:0 [90], which contributes to the increase in 
saturated fat content, although some of it can be elongated 
and unsaturated [90]. Another hypothesis linking chemot-
axis to the impairment of N3 and CLA indices lies on the 
strong dependence of the final fatty acid flux available for 
absorption on the chemotaxis of some ciliates [22, 56, 62, 
91–96]. A chemotaxis-dependent migration/sequestration 
mechanism selectively retains them in the rumen and low-
ers biomass of protozoa reaching the duodenum [94–96], 
which is a major loss, considering that their lipids are 
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among the 30–43% of cis-9, trans-11 C18:2 and the 40% 
of trans-11 C18:1 [33] available for absorption, with also 
high contributions for long chain n-3 due to the engulf-
ment of chloroplasts [97]. However, this hypothesis could 
not be investigated as none of the alr-MGs correlated to 
N3 and CLA involved in chemotaxis matched the genome 
of any protozoan genus in the KEGG database, and inves-
tigation of the links between protist genera and microbial 
functions in our database was hampered by the difficulty 
in identifying ciliate genera due to their low GC content 
[98, 99].

Rumen pH depends in part on host genetic factors, 
such as volatile fatty acid absorption by the epithelium 
[46], feeding behaviour—appetite, time and rhythm of 
chewing [100]—, the amount of saliva produced during 
chewing and the buffering capacity of saliva, which con-
tributes to amortize ~30% of the acids produced daily in 
rumen. The enzymes of rumen bacteria involved in lipol-
ysis and biohydrogenation have optimal activity at pH 
values between 7 and 9 [22]. Values of pH below 6 inhibit 
lipase activities (or lipolytic microorganisms, e.g. Anaer-
ovibrio lipolytica) more than biohydrogenation [54], 
which at those pH values is less affected by the released 
of free long-chain UFA [62]. Given that the microbial 
mechanisms identified in our study vary with ruminal pH 
(e.g. the growth of species from the Proteobacteria phy-
lum, microbial protein synthesis, carbohydrate metabo-
lism, or lipopolysaccharide biosynthesis) [101–103], one 
might think that host genes associated with ruminal pH 
govern the changes described in this study. In our previ-
ous research [53], we identified the abundance of alr-MG 
TSTA3 involved in the metabolism of host microbiome 
crosstalk mediator fucose [104] as an indicator of high 
pH values in the rumen (and consequently an indica-
tor of high CH4 emissions). In this study, we estimated 
strong and negative (P0=0.99) rgN3 for TSTA3 of −0.70 
(whereas rgCLA was not significant), which supports an 
increase in the metabolism of long-chain n-3 dietary 
lipids and decrease of N3 index at high ruminal pH val-
ues, and confirms the value of TSTA3 as a ruminal pH 
indicator. However, pH may not be the only mechanism 
responsible. We have additionally proposed other micro-
biome mechanisms influenced by the host genome, such 
as acetate synthesized by Proteobacteria or lipopolysac-
charide biosynthesis that are known to play key roles in 
bovine intramuscular fat biosynthesis [88, 89] and in the 
activity of stearoyl-CoA desaturase [84, 85].

The final objective in this study was to use the 
information contained in the 110 alr-MGs to predict 
the host genomic breeding values for N3 and CLA 
indices (i.e. microbiome-driven breeding strategy), 
while avoiding costly measurements of fatty acid 
content in beef. To facilitate the implementation of 

the MG information into genomic statistical methods, 
we studied their genomic covariance structure using 
co-abundance networks, which was greatly consistent 
with their covariance at phenotypic level, and used 
redundancy analysis to select a reduced group of 31 alr-
MGs representative of the 110 alr-MGs. An additional 
imposed condition accomplished by the 31 alr-MGs 
was a minimum average relative abundance across 
animals ≥0.01%, as we preferred to avoid low counts as 
they are more prone to be absent in the rumen of some 
animals due to whole metagenomic sequence depth, 
and also because low counts could be subjected to more 
technical variation [105, 106]. Alternatively, a previous 
study in dairy cows used principal components 
to summarize microbiome information [44] to be 
integrated into breeding programs. This approach 
was promising, with microbiome-based principal 
components being heritable and host-genomically 
correlated with the trait of interest (CH4 emissions), 
although its interpretation is not straightforward, 
specifically when based on microbial functions. An 
advantage of our proposed selection strategy [53] is 
that it is based on host genomic correlations between 
alr-MG abundances and N3 and CLA indices which 
have biological meanings and can be easily interpreted 
and compared across studies. Our microbiome-driven 
breeding strategy presented prediction accuracies for 
N3 and CLA indices genomic breeding values which 
were reasonably close to those achieved when using 
measured CLA or N3 as selection information, and 
responses to selection in our population up to ~9% of 
the means of N3 and CLA indices, under 2.06 selection 
intensity. A direct consequence of our microbiome-
driven breeding strategy is a permanent change in 
the HGFC composition, with enhanced or decreased 
abundances of the corresponding alr-MGs previously 
discussed. It is important to further study whether 
there are undesirable consequences of this microbiome 
change on other productive, environmental or health-
associated traits of interest, which can be investigated 
by estimating the host genomic correlations between 
the alr-MGs used for breeding and the corresponding 
traits. In this study, we demonstrate that these 
secondary effects are not necessarily undesirable 
associated with the mitigation of CH4 emissions and 
thus with climate change. In fact, two of the 31 alr-
MGs (aroF and gshA) are involved in the metabolism of 
cysteine and methionine or phenylalanine, tyrosine and 
tryptophan metabolic pathways. Certain alr-MGs on 
these metabolic pathways have been selected as highly 
informative for a microbiome-driven breeding strategy 
specifically designed to reduce CH4 emissions [53]. 
In this study, we estimated that a mitigation in CH4 
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emissions is expected (up to 9.4% of the mean of the 
trait under 2.06 selection intensity) when applying our 
microbiome-driven strategy to increase ~9% of N3 and 
CLA indices in beef. In nutritional studies, a substantial 
overlap has been observed between the inhibitory 
effects of long chain poly-UFA on biohydrogenation 
and methanogenesis [39, 55, 56], as they are toxic to 
both methanogens and protozoa [38]. On the other 
hand, biohydrogenation is probably not an alternative 
H2 sink for methanogenesis because the importance 
of biohydrogenation for the total H2 sink is very low, 
1 to 2% of the H2 produced during fermentation is 
consumed by biohydrogenation [78]. H2 could instead 
be diverted to other beneficial routes for the host as the 
synthesis of microbial proteins, as shown in this study 
and also in our previous work [53].

Conclusion
The high heritability and variation of the novel proposed 
N3 and CLA indices suggests that a healthier fatty 
acid profile in beef can be achieved through selective 
breeding. As an alternative to selection on this costly to 
measure fatty acid profiles in beef, we recommend an 
indirect selection strategy based on specific 31 rumen 
microbial functional genes which are host-genomically 
influenced and host genetically correlated with the fatty 
acid indices. This microbiome-driven breeding strategy 
is potentially more cost-effective and could achieved 
responses of up to 9% of the mean per generation in our 
population. Moreover, the 31 microbial functions had 
desirable host genomic correlations with CH4 emissions, 
and therefore, this breeding strategy would also have 
beneficial effect on CH4 mitigation. Furthermore, our 
study indicates that the host genomic link between the 
rumen microbiome and indicators of healthy fatty acids 
in the muscle is complex and does not necessarily rely on 
the well-known microbial genera or microbial functions 
with biohydrogenating and lipolytic actions. Instead, it 
comprised microbial metabolic pathways that indirectly 
affect microbial lipolytic and biohydrogenation activity, 
such as carbohydrate metabolism and microbial protein 
synthesis affecting H2 metabolism or cell membrane 
components biosynthesis that affects endogenous fatty 
acid synthesis in the muscle via stearoyl-CoA desaturase. 
Another example is microbial functions associated to 
flagellar biosynthesis, which are found in the genome 
of several genera from the Proteobacteria phylum. 
For implementation of the results into practise, the 31 
microbial functions included in the microbiome-driven 
breeding strategy to increase healthy fatty acid indicators 
in beef could be combined with additional microbial 
functions specifically selected for reducing CH4 
emissions and improving of feed conversion efficiency to 

develop an overall cost-effective novel breeding strategy 
based on the rumen microbiome that avoids the large 
costs associated with measuring those traits.

Methods
Animals
The data were obtained from 363 steers used in different 
experiments [107–111] conducted over 5 years (2011, 
2012, 2013, 2014 and 2017). Animals were from different 
breeds (rotational crosses between Aberdeen Angus and 
Limousin breeds, Charolais-crosses and purebred Luing) 
and two basal diets consisting of 480:520 and 80:920 for-
age: concentrate ratios. Table S9 gives the distribution 
of the animals and data across experiments, breeds and 
diets. A detailed description of the diets can be found in 
[107–112]. A power analysis indicated that for the given 
number of animals per experiment, a genetic design of 
sires with on average 8 progeny per sire showed the high-
est power to identify genetic differences between sires.

CH4 emission data
CH4 emissions were individually measured in 285 animals 
(Table S9) for 48h within six indirect open-circuit respira-
tion chambers [110]. These animals represented the four 
breeds and both diets in a balanced design within (but 
not across) experiments: n~17 animals per diet and breed 
combination in the experiments performed in 2011, 2012 
and 2013; and ~35 and 6 animals per breed in the experi-
ments performed in 2014 and 2017, offered only forage-
based diets. One week before entering the respiration 
chambers, the animals were housed individually in train-
ing pens, identical in size and shape to the pens inside the 
chambers, to allow them to adapt to being housed indi-
vidually. At the time of entering the chamber, the average 
age of the animals was 528±38 days and the average live 
weight was 659±54 kg. In each experiment, the animals 
were allocated to the respiration chambers in a rand-
omized design within breed and diet. Animals were fed 
once daily, and the weight of the feed offered and refused 
was recorded. CH4 emissions were expressed as g of CH4/
kg of dry matter intake.

Fatty acid data
The fatty acid composition of beef was available from 245 
animals (Table S9). As before, these animals represented 
the four breeds and both diets in a balanced design within 
experiments: n~17 animals per diet and breed combina-
tion in the experiments performed in 2011 and 2013, n~10 
in 2012 and ~35 animals per breed in 2014, offered only 
forage-based diets. At the time of slaughter, the animals 
were 567±22 days of age. After slaughter, the left carcass 
sides were cut at the 13th rib at 48 h post-mortem. After 
removing a 125-mm section from the caudal cut surface 
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of longissimus thoracis et lumborum, the next 25 mm was 
taken, vacuum-packed and frozen for subsequent analysis. 
The fatty acid analysis was carried out at the University of 
Bristol by direct saponification [75, 113–115]. The samples 
were hydrolysed with 2 M KOH in water to methanol (1:1), 
and the fatty acids were extracted into petroleum spirit, 
methylated using diazomethane and analysed by gas liq-
uid chromatography. The samples were injected in the split 
mode, 70:1, onto a CP Sil 88, 50 m ×0 .25 mm fatty acid 
methyl esters (FAME) column (Chrompack UK Ltd., Lon-
don) with helium as the carrier gas. The output from the 
flame ionization detector was quantified using a computing 
integrator (Spectra Physics 4270, Santa Clara, CA, USA), 
and the linearity of the system was tested using saturated 
(FAME4) and monounsaturated (FAME5) methyl ester 
quantitative standards (Thames Restek UK Ltd., Wind-
sor, Universal Biologicals (Cambridge) Ltd., Cambridge, 
UK), PUFA (n-3; Matreya, Universal Biologicals (Cam-
bridge) Ltd., Cambridge, UK), short to medium chain and 
branched chain fatty acids (bacterial (bacterial acid methyl 
ester mix; Supelco, Sigma-Aldrich Company Ltd., Gilling-
ham, UK) and a mix of C20 and C22 n-3 and n-6 fatty acids 
made in the laboratory from a mix of methyl esters (Sigma, 
Sigma-Aldrich Company Ltd., Gillingham, UK). Only 
major fatty acids are reported, representing over 90% of the 
total fatty acids present. C18:1-trans isomers are incom-
pletely resolved by this procedure and are reported as one 
value. A full description of the meat fatty acid composition 
in our population is provided in Table S10.

Collection and sequencing of genomic and metagenomic 
samples
For host DNA analysis, 6–10 ml of blood from the 363 
steers was collected from the jugular or coccygeal vein in 
live animals or during slaughter in a commercial abattoir. 
Additional 7 blood and 23 semen samples from sires of 
the steers were available. The blood was stored in tubes 
containing 1.8 mg EDTA/ ml blood and immediately 
frozen to −20°C. Genomic DNA was isolated from 
blood samples using Qiagen QIAamp toolkit and from 
semen samples using Qiagen QIAamp DNA Mini 
Kit, according to the manufacturer’s instructions. 
The DNA concentration and integrity were estimated 
with Nanodrop ND-1000 (NanoDrop Technologies). 
Genotyping was performed by Neogen Genomics (Ayr, 
Scotland, UK) using GeneSeek Genomic Profiler (GGP) 
BovineSNP50k Chip (GeneSeek, Lincoln, NE). Missing 
SNP positions were imputed using Beagle 5.2 [116]. 
Genotypes were filtered for quality control purposes 
using PLINK version 1.09b [117]. SNPs were removed 
from further analysis if they met any of these criteria: 
unknown chromosomal location according to Illumina’s 
maps [118], call rates less than 95% for SNPs, deviation 

from Hardy-Weinberg proportions (χ2 test P value<10−8), 
or minor allele frequency less than 0.05. Animals 
showing genotypes with a call rate lower than 90% were 
also removed. After imputation and filtering, 386 animals 
and 38,807 SNPs remained for the analyses.

For microbial DNA analysis, post-mortem digesta 
samples (approximately 50 ml) from 363 steers were 
taken at slaughter (at 567±22 days of age) immediately 
after the rumen was opened to be emptied. Five 
milliliters of strained ruminal fluid was mixed with 10 
ml of PBS containing glycerol (87%) and stored at −20 
°C. DNA extraction from rumen samples was carried 
out following the protocol from Yu and Morrison [119] 
based on repeated bead beating with column filtration. 
DNA concentrations and integrity were evaluated by the 
same procedure (Nanodrop ND-1000) as for the blood 
samples. Four animals out of 363 did not yield rumen 
samples of sufficient quality for metagenomics analysis 
(therefore, we kept 359 samples). DNA Illumina TruSeq 
libraries were prepared from the entire genomic DNA of 
rumen samples and were whole metagenomic shotgun 
sequenced on Illumina HiSeq systems 4000 (samples 
from 283 animals from experimental years 2011, 2012, 
2013 and 2014) [68, 120] or NovaSeq (samples from 76 
animals from experimental year 2017) by Edinburgh 
Genomics (Edinburgh, Scotland, UK). Paired-end DNA 
reads (2 × 150 bp for Hiseq systems 400 and NovaSeq) 
were generated, resulting in between 7.8 and 47.8 GB per 
sample (between 26 and 159 million paired reads).

Bioinformatics
To measure the abundance of known functional 
microbial genes, whole metagenome sequencing reads 
were quality trimmed using Fastp [121] and assembled 
using MEGAHIT [122]. Proteins were predicted using 
Prodigal [123], filtered to remove incomplete proteins 
and searched against the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (https://​www.​genome.​
jp/​kegg/​ko.​html) [124] (version 2020-10-04) using 
KofamScan [74]. Hits that passed KofamScan’s default 
thresholds were assigned to the KEGG orthologous 
groups (KO). Proteins that passed the threshold for 
multiple KOs were grouped separately, as were those 
that did not have a hit. The resulting KO grouping 
corresponded to a highly similar group of sequences. 
BWA-MEM [125] was used to map the reads against 
their assembly, and KO abundance was calculated using 
BamDeal [126] and BEDTools [127]. We identified a 
total of 7976 KO abundances, in this study referred to 
as microbial genes (MG). To discard those non-core 
microbiome functions, we used only MG present in at 
least 252 out of the 359 (70%) samples and mean relative 
abundance (RA) > 0.001%. This resulted in 3632 core MG 

https://www.genome.jp/kegg/ko.html
https://www.genome.jp/kegg/ko.html
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cumulatively accounting for 99.55% of the total counts 
identified in the dataset.

For phylogenetic annotation of rumen samples, we fol-
lowed the same pipeline as described in Martínez-Álvaro 
et al. [53]. Briefly, the sequence reads of 359 samples were 
aligned to a database including cultured genomes from 
the Hungate 1000 collection [128] and Refseq genomes 
[129] using Kraken software [130], and 1178 microbial 
genera abundances were identified. We kept only those 
microbes present in all the samples (to ensure sufficient 
data for the genomic analysis) and with a RA > 0.001% 
(1108 microbial genera), equivalent to 99.99% of the total 
number of counts. We used the 4941 rumen uncultured 
genomes (RUGs) identified by Stewart et al. [68] to iden-
tify and quantify the abundance of uncultured species 
in 282 animals of the present study. To ensure sufficient 
data for genomic analysis, we discarded those RUGs pre-
sent in less than 70% of the animals (using a cutoff of 1X 
coverage) and kept 225 RUGs. The large number of RUGs 
discarded is related to the high specificity of the RUGs, 
which are often classified at the strain level and occur 
only in some of the animals. A detailed description of the 
metagenomics assembly and binning process and estima-
tion of the depth of each RUG in each sample is described 
in Stewart et  al. [68]. Our analysis was focused on the 
abundance of the two microbial genera Butyrivibrio and 
Anaerovibrio, present in the rumen samples of all animals, 
and of the two RUGs classified within the Butyrivibrio 
genera (RUG14388 and RUG10859) which were present 
in 204 of the 282 animals with RUG information.

Log‑ratio transformations of compositional data
We applied natural log-ratio transformations in fatty 
acids and microbiome data in order to deal with their 
compositional nature and mitigate the estimation of spu-
rious correlations [131] between the traits.

Fatty acid data
N3 [132] and CLA indices were calculated as follows:

N3 = ln

(

C18 : 3n − 3+ C20 : 5n − 3+ C22 : 5n − 3+ C22 : 6n − 3

C12 : 0+ C14 : 0+ C16 : 0

)

CLA = ln
cis − 9, trans − 11 C18 : 2+ trans − 11 C18 : 1

C12 : 0+ C14 : 0+ C16 : 0

where individual fatty acid contents are expressed as 
grams per 100g of meat. Descriptive statistics of the indi-
ces in our beef population are provided in Table S10.

Metagenomics data
Relative abundances equal to zero, which comprised 4.52% 
of the whole MG database, and 27.7% in the RUGs data-
base, were imputed based on a Bayesian-multiplicative 
replacement by using cmultrepl function in zCompositions 
package [133]. This algorithm imputes zero values from a 
posterior estimate of the multinomial probability assuming 
a Dirichlet prior distribution with default parameters for 
GBM method [134] and performs a multiplicative readjust-
ment of non-zero components to respect original propor-
tions in the composition. Based on preliminary analyses, 
we found that additive natural log-ratio [71] transformation 
(alr) of the relative abundances of the MG (alr-MG), and 
a centred log-ratio [71] transformation (clr) of the relative 
abundances of microbial genera Anaerovibrio and Butyrivi-
brio and RUG14388 and RUG10859 were most appropriate 
log-ratio transformations for analysing the metagenomic 
data. Transformation alr permits comparison with other 
studies using different numbers of microbial parts in the 
total database (i.e. it has subcompositional coherence), and 
it has a simpler interpretation in practice than other natu-
ral log-ratio transformations (clr or isometric natural log-
ratios), since they do not involved ratios of geometrical 
means [135]. Assuming J denotes the number of variables 
in the database (J =3632 MGs), the abundance of each alr-
MG within a sample was expressed as [136]:

where xjis the relative abundance of the jth MG (j from 
1 to 3631) and xref  is the relative abundance of a refer-
ence MG. The criteria to select the reference MG was a 
trade-off between a high Procrustes correlation between 
the exact log-ratio geometry and the approximate geom-
etry engendered by the set of alr-MGs (i.e. maintains the 
isometry between samples), and a low variance of its log-
transformed relative abundance, which further facilitates 

alr
(

xj
)

= ln

(

xj

xref

)

= ln
(

xj
)

− ln
(

xref
)

, j = 1, . . . , J − 1, j �= ref
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the alr interpretation reducing it to the numerator part 
[137] (Figure S2). The abundance of MG ribulose-phos-
phate 3-epimerase [EC:5.1.3.1] (rpe, KEGG code K01783) 
involved in pentose phosphate pathway (average relative 
abundance of 0.03% in our population) was selected as 
denominator with a high Procrustes correlation equal 
to 0.9974 and a small log-ratio variance equal to 0.0379 
(coefficient of variation =5.08%, five points summary: 
min=−4.516, 1st quartile=−3.555, median=−3.466, 
mean =−3.502, 3rd quartile −3.405, max. −3.20). The 
small variation of rpe allowed us to simplify the interpre-
tation of each alr-MGs as an interpretation of its numer-
ator. Additionally, we selected rpe because it consistently 
presented these good properties in the microbiome 
composition of other ruminant MG data external to this 
study, including a longitudinal study (data not shown). 
From the biological point of view, rpe, which is involved 
in essential housekeeping functions, has been pointed as 
part of the core gene set along bacteria [138], and metha-
nogenic archaea [139], and plays a key role in the sugar 
catabolism of several fungi [140]. In the case of the abun-
dances of microbial genera Anaerovibrio and Butyrivibrio 
and RUG14388 and RUG10859, alr transformation was 
not used because, after a deep exploration, we did not 
find an appropriate reference microbial genera or RUG 
which strictly conserved the isometry between samples 
(Procrustes correlation was ≤ 0.96), and therefore, clr 
was used instead:

Assuming J denotes the number of variables in the 
database (J=1108 in microbial genera and 225 in RUGs), 
and xj the relative abundance of the jth MG.

Study of diet, breed and experimental effects
To evaluate the magnitude of the combined effect of diet, 
breed and experiment (in order to account for all of these 
effects including their interactions which will be adjusted 
for in all genetic analysis) in CLA and N3 indices and the 
alr or clr-transformed whole functional and taxonomic 
microbiome databases, we used a one-way ANOVA anal-
ysis (N3, CLA indices) or one-way redundancy analysis 
(microbiome datasets) using R package vegan [141]. The 
combined effect of diet, breed and experiment explained 
53% and 55% of the phenotypic variance of CLA and N3 
indices (P value < 2.0×10−16). In microbiome databases, 
the combined effect accounted for 26.3% of the total 
variance in the alr-MG database, 28.6% in the micro-
bial genera database comprised by clr-Butyrivibrio and 

clr
�

xj
�

= ln







xj
�

�J
1 xj

�1/J






= ln

�

xj
�

−
1

J

J
�

1

ln
�

xj
�

, j = 1, . . . , J

clr-Anaerovibrio genera, and 32.9% in the RUGs database 
comprised by clr-RUG14388 and clr-RUG10859 (P value 
= 0.001 in all cases).

Study of the host‑genomically influenced functional core 
microbiome
A pipeline of the statistical analysis performed is dis-
played in Figure S3. Genomic heritabilities (h2) of 3631 
alr-MGs, clr-Anaerovibrio and clr-Butyrivibrio genera, 
clr-RUG14388 and clr-RUG10859 abundances, CLA and 
N3 indices were estimated by fitting GBLUP univariate 
animal models including the combination of diet, breed 
and experiment as fixed effect (17 levels) and the host 
genomic effect, assumed to be normally distributed with 
mean equal to 0 and variance equal to the host genomic 
relationship matrix between the individuals [142] multi-
plied by the genomic variance. The genomic relationship 
matrix was built following the method 2 of Van Randen 
[142]. Residuals were assumed to be independently nor-
mally distributed and genomic and residual effects were 
assumed to be uncorrelated between them. Bayesian sta-
tistics were used [143], assuming bounded flat priors for 
all unknowns. Analyses were computed using the THR-
GIBBSF90 program [144]. Results were based on Markov 
chain Monte Carlo chains consisting of 1,000,000 itera-
tions, with a burn-in period of 200,000, and to reduce 
autocorrelations, only 1 of every 100 samples was saved 

for inferences. In all analyses, convergence was tested 
using the POSTGIBBSF90 [144] programme by calcu-
lating the Z criterion of Geweke. Monte Carlo sampling 
errors were computed using time-series procedures and 
checked to be at least 10 times lower than the standard 
deviation of the marginal posterior distribution. As h2 
estimates, we used the mean of its marginal posterior 
distribution and the highest posterior density interval at 
95% probability (HPD95%). To test the significance of host 
genomic effects on each microbial trait, we analysed the 
data with and without genomic effects in the model and 
(i) compared the deviance information criterion [145] 
of the models and (ii) computed the Bayes Factor (using 
the approximation of Newton and Raftery [146]) as the 
ratio between the mean of the posterior likelihood distri-
bution of the model with genomic effects divided by that 
of the model without genomic effects. We accounted for 
false discovery rate by setting a null hypothesis rejection 
threshold of Bayes Factor ≥14.5, following the procedure 
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described in Wen et  al. [147] assuming and alpha value 
of 0.0001, and estimating the upper-bond of parameter 
(proportion of the data generated from the null hypoth-
esis) using the sample mean of the observed Bayes Fac-
tors [147]. Strong evidence of a host genomic effect on 
the microbial trait (i.e. belonging to the host-genomically 
influenced functional core microbiome (HGFC)) was 
defined when the joined condition of DIC of the full 
model being at least 20 points lower than the DIC in the 
reduced model, and a Bayes Factor higher ≥ 14.5. As gen-
erally accepted in animal breeding, we considered micro-
bial abundances with h2 estimates <0.20 being lowly 
heritable, 0.20 < h2 < 0.40 being moderately heritable 
and h2 estimates >0.40 being highly heritable. Univariate 
analysis were also run from a frequentist approach using 
AIREMLF90 [144] software, and we obtained consist-
ent heritability estimates (Pearson correlation between 
Bayesian and Frequentist heritability estimates was 0.88, 
and differences between both averaged −0.05±0.03).

Host genomic correlations between HGFC and N3 (rgN3) 
and CLA (rgCLA) indices
We estimated the host genomic correlations between N3 
or CLA index and the HGFC alr-MGs, clr-Anaerovibrio 
and clr-Butyrivibrio genera, clr-RUG14388 and clr-
RUG10859 abundances. We fitted a GBLUP bivariate 
animal model per pairwise trait combination including 
the host genomic effect, normally distributed with a mean 
equal to 0 and variance equal to the Kronecker product 
of the genomic relationship matrix and the 2 × 2 host 
genomic (co)variance matrix of the 2 corresponding 
traits. Residuals were also assumed to be normally 
distributed with a mean equal to 0 and variance equal to 
the Kronecker product between an identity matrix of the 
same order as the number of individuals with data and the 
2 × 2 residual (co)variance matrix of the 2 corresponding 
traits. Genomic and residual effects were assumed to be 
uncorrelated between them. Bayesian statistics were used, 
assuming bounded flat priors for all unknowns. Analyses 
were computed using the THRGIBBSF90 program. The 
results were based on Markov chain Monte Carlo chains 
consisting of 1,000,000 iterations, with a burn-in period of 
200,000, and to reduce autocorrelations, only 1 of every 
100 samples was saved for inferences. In all analyses, 
convergence was tested using the POSTGIBBSF90 
[144] program by calculating the Z criterion of Geweke. 
Monte Carlo sampling errors were computed using 
time-series procedures and checked to be at least 10 
times lower than the standard deviation of the marginal 
posterior distribution. As estimate for the host genomic 
correlations, we used the mean of its marginal posterior 
distribution and the HPD95%. To investigate their 

confidence level, we estimated the posterior probability of 
the host genomic correlation of being > or < 0 when the 
mean of the correlation was positive or negative (P0) and 
considered them significant when P0 ≥ 0.95.

Microbial taxa associated to alr‑MGs host‑genomically 
correlated with fatty acid indices
To identify microbial taxa that have been found to 
contain the alr-MGs of interest (i.e. those belonging to 
the HFCM and host-genomically correlated with N3 
and/or CLA indices) we used R (version 4.0.0) with the 
package KEGGREST (version 1.30) [64] to link the MGs 
with organism codes in the KEGG database. Codes 
beginning with RG were excluded as the corresponding 
taxa information was not available.

Alr‑MG co‑abundance network analyses
We focus the following analysis exclusively on alr-
MGs from the HGFC host-genomically correlated 
with CLA or/and N3 indices (P0 ≥ 0.95) and showing 
the same positive or negative correlation with both 
indices (n=110 alr-MGs). To study the phenotypic 
and host genomic correlation structure amongst the 
110 alr-MGs, we computed a co-abundance network 
(Graphia software [148]) connecting or edging alr-MGs 
(nodes) when the Pearson correlation between their 
alr transformed abundances > l0.30l. We computed 
the co-abundance network at phenotypic and genomic 
level using as phenotype the pre-corrected data using 
the combination of diet, breed and experiment as 
fixed effect and as genotype the estimated genomic 
breeding values. The software applies Markov 
Clustering algorithm by a flow simulation model [149] 
to find discrete groups of nodes (clusters) based on their 
position within the overall topology of the graph. The 
granularity of the clusters, i.e. the minimum number of 
nodes that a cluster has to contain, was set to 2 nodes.

Selection of alr‑MG abundances for microbiome‑breeding 
strategy and computation of their host genomic 
and residual co(variance) matrices
Of the 110 alr-MGs, we considered for breeding pur-
poses only those with average relative abundances across 
animals ≥ 0.01% (n=45). We applied a redundancy anal-
ysis (R package vegan [141]) to test whether any of these 
45 alr-MGs were redundant in explaining total variance 
contained in the estimated breeding values of the 110 
alr-MGs. After discarding redundant alr-MGs (P values 
> 0.05), we kept 31 alr-MGs. To use alr-MG informa-
tion to select hosts with increased N3 and CLA indices, 
the estimation between their host genomic and residual 
(co)variance matrices was required. Host genomic and 
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residual (co)variances among the 31 selected alr-MGs 
were estimated using 465 bivariate analyses. Bivariate 
analyses fitted the same model as previously described 
for estimation of rgN3 and rgCLA with the same assump-
tions. Results were based on Markov chain Monte Carlo 
chains consisting of 1,000,000 iterations, with a burn-
in period of 200,000, and only 1 of every 100 samples 
was saved for inferences. Convergence was tested with 
POSTGIBBSF90 program by checking Z criterion of 
Geweke. Monte Carlo sampling errors were computed 
using time-series procedures and checked to be at least 
10 times lower than the standard deviation of the pos-
terior marginal distribution [143]. The 33 × 33 host 
genomic and residual variance-covariance matrices, 
including N3, CLA indices and the 31 alr-MGs were 
built with off-diagonals based on the means of the pos-
terior distributions of the residual and genomic covari-
ance estimates, and diagonals based on averaged means 
of posterior distributions of the residual and genomic 
variances estimates. Both matrices needed bending to 
be positive definite (tolerance for minimum eigenval-
ues=0.001). The difference between original and bent 
matrices was never higher than the posterior standard 
error of the corresponding parameters.

Accuracy and response to the selection
We analysed two different scenarios to estimate the breed-
ing value accuracies of N3 and CLA indices: (i) by using 
solely measured N3 or CLA index and (ii) by using the 
31 alr-MGs. The two scenarios were computed with data 
from 245 animals with both fatty acid data and metagen-
omics information available to compare the two scenarios 
based on equal conditions. In both scenarios, estimated 
host genomic breeding values were calculated by GBLUP 
analysis assuming as fixed variance components the val-
ues on the previously estimated 33 × 33 host genomic 
and residual variance-covariance matrices of the traits 
after bending. Scenario (i) was performed using a univari-
ate GBLUP analysis including only measured CLA or N3 
index. The scenario (ii) was computed by fitting a multi-
variate GBLUP model including the 31 alr-MGs, CLA and 
N3 (setting CLA and N3 indices as missing values [150]). 
In these analyses, solutions were based on Markov chain 
Monte Carlo chains consisting of 100,000 iterations, with 
a burn-in period of 20,000, and to reduce autocorrelation 
only 1 of every 100 samples was saved for inferences. The 
accuracies of CLA and N3 indices estimated host genomic 
breeding values in each scenario were computed as:

(11)Accuracyi =

√

1−
sd2i

gRMii ∗ σ
2
g

where sdi is the standard deviation of the posterior 
marginal distribution of the host genomic value for ani-
mal i, gRMii is the genomic relationship matrix diagonal 
element for animal i and σ 2

g  is the genomic variance for 
N3 or CLA. The mean and standard deviation of the 
accuracies across animals was computed. To estimate 
the response to selection in N3 and CLA indices based 
on information from the 31 alr-MGs, we built the animal 
ranking based on the aggregated (sum) N3 and CLA esti-
mated host genomic breeding values [150] assuming the 
estimated breeding values of each trait have equal eco-
nomic weights as described in Schneeberger et al. [150]. 
Response to selection in N3 and CLA indices was esti-
mated as the marginal posterior distribution of the differ-
ence between the mean estimated host genomic breeding 
values of all animals with data and the mean of selected 
animals based on the aggregated ranking when alterna-
tively, 40%, 30%, 20%, 10% or 5% of our population were 
selected (equivalent to 1.06, 1.159, 1.4, 1.755 and 2.063 
intensity of selection).

Correlated responses in CH4 emissions after selection 
for the functional microbiome to improve N3 and CLA 
indices
First, we estimated the host genomic correlations 
between CH4 and the 31 alr-MGs following the same 
model and assumptions as previously described. 
Then, the estimated host genomic breeding values for 
CH4 emissions were obtained by microbiome-driven 
breeding after fitting a 33-multivariate GBLUP model 
setting CH4 observations as missing values and the 32 
× 32 (31 alr-MGs and CH4 emissions) host genomic 
and residual variance-covariance matrices of the 
traits after bending as fixed variance components. 
Response to selection in CH4 emissions was estimated 
as the marginal posterior distributions of the difference 
between the mean of estimated host genomic breeding 
values of all animals with data and the mean of selected 
animals based on the previously defined aggregated 
ranking, when alternatively, 40%, 30%, 20%, 10% or 5% 
of our population were selected.
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Additional file 1: Figure S1. Distribution of N3 and CLA fatty acid indices 
in beef in our population. N3 index estimated as the natural logarithm 
of the ratio between C18:3n-3 + C20:5n-3 + C22:5n-3 + C22:6n-3 and 
C12:0 + C14:0 + C16:0. CLA index estimated as the natural logarithm of 
the ratio between cis-9, trans-11 C18:2 + trans-11 C18:1 and C12:0 + C14:0 
+ C16:0. Values are corrected by breed, diet and experiment combined 
effect. Figure S2. Selection of the microbial gene ribulose-phosphate 
3-epimerase [EC:5.1.3.1] (rpe, KEGG code K01783) - highlighted in red - as 
a denominator for additive log-ratio transformation based on a balance 
between maximal Procrustes correlation with the complete pairwise 
log-ratio geometry and minimal log-ratio variance. Figure S3. Pipeline of 
the statistical analysis followed in the study. HGFC: host-genomically influ‑
enced functional core microbiome; MG: additive log-ratio transformed 
microbial gene abundances, h2: heritability estimate; CH4: methane: EBVs: 
host genomic breeding values; i: selection intensity.

Additional file 2: Table S1. Microbial gene abundances in rumen 
microbiome (analyzed after an additive log-ratio transformation) with 
significant host genomic effects referred to as host-specific functional 
core microbiome (HGFC). Table S2. Occupancy rates and heritabilities 
of micobial gene abundances (analyzed after an additive log-ratio 
transformation) involved in lipolysis and biohydrogenation processes in 
rumen found in our population. Table S3. Host genomic correlations 
between heritable additive log-ratio transformed microbial gene 
abundances and N3 and CLA Indices in beef with propbability of being 
positive of negative >95% (marked in bold). Table S4. The 963 different 
microbial genera in rumen carrying the 372 heritable additive log-ratio 
transformed microbial gene abundances both positively or negatively 
genomically correlated with N3 and CLA inidces in beef. Table S5. 
Composition of clusters from a co-abundance network analysis1 among 
phenotypic values (after correction for trial and diet) of the 110 additive 
log-ratio transformed microbial gene abundances genomically correlated 
with N3 and CLA indices with the same sign. Table S6. Composition 
of clusters from a co-abundance network analysis1 among estimated 
genomic breeding values of the 110 additive log-ratio transformed 
microbial gene abundances genomically correlated with N3 and CLA 
indices with the same sign. Table S7. Micorbial genes selected for 
breeding purpouses based on mean relative abundance (RA)>0.01%, 
significant genomic effects, host genomic correlation with N3 and CLA 
indices positively or negatively (P0 > 0.95) and significantly explaining 
part of the genomic variance inherent in the 110 additive-log transformed 
microbial genes. Table S8. Host genomic correlations between 
additive log-ratio transformed micorbial genes selected for breeding 
purpouses and methane emissions (g/kg dry matter intake). Table S9. 
Experimental design displaying the number of animals within each 
breed, diet and experiment. Table S10. Raw fatty acid composition (% 
of total fatty acids) and methane emissions (g/kg of dry matter intake) 
in beef cattle measured in 245 and 285 animals, respectively. Table S11. 
Correspondance between COG abreviations and full names.
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