476 research outputs found

    Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling

    Full text link
    Based on first principles density functional theory calculations we explored energetics of oxygen reduction reaction over pristine and nitrogen-doped graphene with different amounts of nitrogen doping. The process of oxygen reduction requires one more step then same reaction catalyzed by metals. Results of calculations evidence that for the case of light doped graphene (about 4% of nitrogen) energy barrier for each step is lower than for the same process on Pt surface. In contrast to the catalysis on metal surface the maximal coverage of doped graphene is lower and depends on the corrugation of graphene. Changes of the energy barriers caused by oxygen load and corrugation are also discussed.Comment: 11 pages, 2 figures, accepted in Nanoscale as communicatio

    Multiscale Analysis of Metal Oxide Nanoparticles in Tissue: Insights into Biodistribution and Biotransformation

    Get PDF
    Metal oxide nanoparticles have emerged as exceptionally potent biomedical sensors and actuators due to their unique physicochemical features. Despite fascinating achievements, the current limited understanding of the molecular interplay between nanoparticles and the surrounding tissue remains a major obstacle in the rationalized development of nanomedicines, which is reflected in their poor clinical approval rate. This work reports on the nanoscopic characterization of inorganic nanoparticles in tissue by the example of complex metal oxide nanoparticle hybrids consisting of crystalline cerium oxide and the biodegradable ceramic bioglass. A validated analytical method based on semiquantitative X‐ray fluorescence and inductively coupled plasma spectrometry is used to assess nanoparticle biodistribution following intravenous and topical application. Then, a correlative multiscale analytical cascade based on a combination of microscopy and spectroscopy techniques shows that the topically applied hybrid nanoparticles remain at the initial site and are preferentially taken up into macrophages, form apatite on their surface, and lead to increased accumulation of lipids in their surroundings. Taken together, this work displays how modern analytical techniques can be harnessed to gain unprecedented insights into the biodistribution and biotransformation of complex inorganic nanoparticles. Such nanoscopic characterization is imperative for the rationalized engineering of safe and efficacious nanoparticle‐based systems

    Potential and Actual Terrestrial Rabies Exposures in People and Domestic Animals, Upstate South Carolina, 1994–2004: A Surveillance Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there has been a reduction of rabies in pets and domestic animals during recent decades in the United States, rabies remains enzootic among bats and several species of terrestrial wildlife. Spillover transmission of wildlife rabies to domestic animals therefore remains a public health threat</p> <p>Methods</p> <p>Retrospective analysis of surveillance data of reported animal incidents (bites, scratches, mucous membrane contacts) from South Carolina, 1995 to 2003, was performed to assess risk factors of potential rabies exposures among human and animal victims.</p> <p>Results</p> <p>Dogs and cats contributed the majority (66.7% and 26.4%, respectively) of all reported incidents, with stray dogs and cats contributing 9.0% and 15.1 respectively. Current rabies vaccination status of dogs and cats (40.2% and 13.8%, respectively) were below World Health Organization recommended levels. Owned cats were half as likely to be vaccinated for rabies as dogs (OR 0.53, 95% CI 0.48, 0.58). Animal victims were primarily exposed to wildlife (83.0%), of which 27.5% were rabid. Almost 90% of confirmed rabies exposures were due to wildlife. Skunks had the highest prevalence of rabies among species of exposure animals (63.2%). Among rabid domestic animals, stray cats were the most commonly reported (47.4%).</p> <p>Conclusion</p> <p>While the majority of reported potential rabies exposures are associated with dog and cat incidents, most rabies exposures derive from rabid wildlife. Stray cats were most frequently rabid among domestic animals. Our results underscore the need for improvement of wildlife rabies control and the reduction of interactions of domestic animals, including cats, with wildlife.</p

    Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis

    Get PDF
    The system of membrane receptor Fas and its ligand FasL compose one of the main pathways triggering apoptosis. However, the role of their soluble forms has not been clarified yet. Although sFasL can be converted from the membrane-bound form by matrix metalloproteinases (MMPs), there are no data on relations between sFas/sFasL, MMPs and their tissue inhibitors (TIMPs) in patients on chronic dialysis—neither children nor adults. The aim of our study was to evaluate serum concentrations of sFas, sFasL, and their potential regulators (MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2), in children and young adults chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 19 patients on hemodialysis (HD) and 30 controls were examined. Serum concentrations of sFas, sFasL, MMPs and TIMPs were assessed by ELISA. Median values of sFas, sFasL, sFas/sFasL ratio, MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-2 were significantly elevated in all dialyzed patients vs. controls, the highest values being observed in subjects on HD. A single HD session caused the decrease in values of all parameters to the levels below those seen in children on APD. Regression analysis revealed that MMP-7 and TIMP-1 were the best predictors of sFas and sFasL concentrations. Children and young adults on chronic dialysis are prone to sFas/sFasL system dysfunction, more pronounced in patients on hemodialysis. The correlations between sFas/sFasL and examined enzymes suggest that MMPs and TIMPs take part in the regulation of cell death in the pediatric population on chronic dialysis, triggering both anti- (sFas) and pro-apoptotic (sFasL) mechanisms

    The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous bacterial peritonitis (SBP) is a common clinical disease and one of the most severe complications of acute liver failure (ALF). Although the mechanism responsible for SBP is unclear, cytokines play an important role. The aim of this study was to investigate the effects of tumor necrosis factor-alpha (TNF-α) on the structure of the intestinal mucosa and the expression of tight junction (Zona Occludens 1; ZO-1) protein in a mouse model of ALF.</p> <p>Methods</p> <p>We induced ALF using D-galactosamine/lipopolysaccharide (GalN/LPS) or GalN/TNF-α and assessed the results using transmission electron microscopy, immunohistochemistry, Western blotting, ELISA and real-time quantitative PCR. The effects of administration of anti-TNF-α IgG antibody or anti-TNF-α R1 antibody before administration of GalN/LPS or GalN/TNF-α, respectively, on TNF-α were also assessed.</p> <p>Results</p> <p>Morphological abnormalities in the intestinal mucosa of ALF mice were positively correlated with serum TNF-α level. Electron microscopic analysis revealed tight junction (TJ) disruptions, epithelial cell swelling, and atrophy of intestinal villi. Gut bacteria invaded the body at sites where TJ disruptions occurred. Expression of ZO-1 mRNA was significantly decreased in both ALF models, as was the level of ZO-1 protein. Prophylactic treatment with either anti-TNF-α IgG antibody or anti-tumor necrosis factor-a receptor1 (anti-TNF-α R1) antibody prevented changes in intestinal tissue ultrastructure and ZO-1 expression.</p> <p>Conclusion</p> <p>TNF-α affects the structure of the intestinal mucosa, decreases expression of ZO-1, and affects the morphology of the colon in a mouse model of ALF. It also may participate in the pathophysiological mechanism of SBP complicated to ALF.</p

    Signal-Regulated Pre-mRNA Occupancy by the General Splicing Factor U2AF

    Get PDF
    Alternative splicing of transcripts in a signal-dependent manner has emerged as an important concept to ensure appropriate expression of splice variants under different conditions. Binding of the general splicing factor U2AF to splice sites preceding alternatively spliced exons has been suggested to be an important step for splice site recognition. For splicing to proceed, U2AF has to be replaced by other factors. We show here that U2AF interacts with the signal-dependent splice regulator Sam68 and that forced expression of Sam68 results in enhanced binding of the U2AF65 subunit to an alternatively spliced pre-mRNA sequence in vivo. Conversely, the rapid signal-induced and phosphorylation-dependent interference with Sam68 binding to RNA was accompanied by reduced pre-mRNA occupancy of U2AF in vivo. Our data suggest that Sam68 can affect splice site occupancy by U2AF in signal-dependent splicing. We propose that the induced release of U2AF from pre-mRNA provides a regulatory step to control alternative splicing

    Atoh8, a bHLH Transcription Factor, Is Required for the Development of Retina and Skeletal Muscle in Zebrafish

    Get PDF
    Math6/atoh8, a bHLH transcription factor, is thought to be indispensable for early embryonic development and likely has important roles in vertebrate tissue-specific differentiation. However, the function of Atoh8 during early development is not clear because homozygous knockout causes embryonic lethality in mice. We have examined the effects of the atoh8 gene on the differentiation of retina and skeletal muscle during early development in zebrafish.We isolated a Math6 homologue in zebrafish, designated as zebrafish atoh8. Whole -mount in situ hybridization analysis showed that zebrafish atoh8 is dynamically expressed mainly in developing retina and skeletal muscle. Atoh8-MO knock-down resulted in reduced eye size with disorganization of retinal lamination. The reduction of atoh8 function also affected the arrangement of paraxial cells and differentiated muscle fibers during somite morphogenesis.Our results show that Atoh8 is an important regulator for the development of both the retina and skeletal muscles necessary for neural retinal cell and myogenic differentiation during zebrafish embryogenesis
    corecore