62 research outputs found

    In a Good Way: Advancing Funder Collaborations to Promote Health in Indian Country

    Get PDF
    Funders continue to be challenged by how to best promote work in American Indian communities that builds health equity, addresses community context, and reduces the disproportionate impact of commercial tobacco. In particular, public health programs that address substance abuse and tobacco control promote the use of evidence-based practices that tend to emphasize a one-size-fits-all approach and that are rarely researched among American Indian populations. These practices, therefore, lack cultural validity in those communities. This article examines how three organizations collaborated on work to control commercial tobacco use in Minnesota’s Indian Country, and shares lessons learned on how they came to incorporate tribal culture, respect traditional tobacco practices, and acknowledge historical trauma to inform their grantmaking

    Beneficial effects of combinatorial micronutrition on body fat and atherosclerosis in mice

    Get PDF
    Aims More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. Methods and results Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. Conclusion Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in human

    Local sales restrictions significantly reduce the availability of menthol tobacco: findings from four Minnesota cities

    Full text link
    BACKGROUND In 2017 and 2018, Minneapolis, St. Paul, Duluth and Falcon Heights, Minnesota were among the first US cities to restrict the sale of menthol tobacco to adult-only stores. The study examined changes in the availability and marketing of these products following policy implementation. METHODS Retail store audits were conducted approximately 2 months pre-policy and post-policy implementation. Tobacco retail stores (n=299) were sampled from tobacco licensing lists in Minneapolis, St. Paul, Duluth and Falcon Heights, as well as six comparison cities without menthol policies. The presence of menthol tobacco was assessed, along with the number of interior and exterior tobacco ads and promotions at each store. RESULTS The majority of policy intervention stores (grocery, convenience stores and pharmacies) were compliant (Minneapolis, 84.4%; Duluth, 97.5%; and St. Paul and Falcon Heights, 100.0%) and did not sell menthol tobacco. In contrast, menthol tobacco was available in all comparison city stores, and most (96.0%) exempted tobacco shops and liquor stores post-policy implementation. Two Minneapolis convenience stores added interior tobacco shops, allowing them to continue selling menthol tobacco. Significant decreases in menthol tobacco marketing post-policy were observed in the stores' interior in Minneapolis, St. Paul and Duluth (p<0.001) and on the stores' exterior in Duluth (p=0.023). CONCLUSIONS Findings demonstrate high rates of compliance, indicating that sales restrictions can significantly reduce the availability of menthol tobacco. However, challenges to policy adherence underscore the need for continued monitoring and enforcement action

    Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity

    Get PDF
    Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous' aldosterone) and in ‘exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complication

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formatio

    SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    Get PDF
    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-kappaB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation

    Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells

    Get PDF
    Aims The mammalian silent information regulator-two 1 (Sirt1) blunts the noxious effects of cardiovascular risk factors such as type 2 diabetes mellitus and obesity. Nevertheless, the role of Sirt1 in regulating the expression of tissue factor (TF), the key trigger of coagulation, and arterial thrombus formation remains unknown. Methods and results Human as well as mouse cell lines were used for in vitro experiments, and C57Bl/6 mice for in vivo procedures. Sirt1 inhibition by splitomicin or sirtinol enhanced cytokine-induced endothelial TF protein expression as well as surface activity, while TF pathway inhibitor protein expression did not change. Sirt1 inhibition further enhanced TF mRNA expression, TF promoter activity, and nuclear translocation as well as DNA binding of the p65 subunit of nuclear factor-kappa B (NFκB/p65). Sirt1 siRNA enhanced TF protein and mRNA expression, and this effect was reduced in NFκB/p65−/− mouse embryonic fibroblasts reconstituted with non-acetylatable Lys310-mutant NFκB/p65. Activation of the mitogen-activated protein kinases p38, c-Jun NH2-terminal kinase, and p44/42 (ERK) remained unaffected. In vivo, mice treated with the Sirt1 inhibitor splitomicin exhibited enhanced TF activity in the arterial vessel wall and accelerated carotid artery thrombus formation in a photochemical injury model. Conclusion We provide pharmacological and genetic evidence that Sirt1 inhibition enhances TF expression and activity by increasing NFκB/p65 activation in human endothelial cells. Furthermore, Sirt1 inhibition induces arterial thrombus formation in vivo. Hence, modulation of Sirt1 may offer novel therapeutic options for targeting thrombosi

    Ribociclib-induced liver injury: a case report

    Get PDF
    BackgroundIdiosyncratic drug-induced liver injury (DILI) is a rare, unpredictable hepatic adverse event and the most common cause of acute liver failure in Europe and the US. Ribociclib is a potent Cyclin-dependent kinase 4 and 6 (CDK4/6)-inhibitor administered for advanced hormone-receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Previous reports have shown hepatotoxicity without liver necrosis related to ribociclib.Case presentationA 41-year-old female patient with primary metastatic HR-positive, HER2-negative breast cancer developed liver enzyme elevation under treatment with ribociclib. Ribociclib was withdrawn 8 weeks after initiation due to liver enzyme elevation. A liver biopsy, performed due to further enzyme increase (peak ALT 2836 U/l), onset of jaundice (peak bilirubin 353 µmol/l) and coagulopathy (INR 1.8) two weeks later, revealed acute hepatitis with 30% parenchymal necrosis. Roussel Uclaf Causality Assessment Method (RUCAM) score was 7 points (probable). Under treatment with prednisone (60mg), initiated 2 weeks after drug withdrawal, and subsequently N-acetylcysteine (Prescott regimen) liver enzymes normalized within 8 weeks along with prednisone tapering.ConclusionThis case illustrates the development of a severe idiosyncratic hepatocellular pattern DILI grade 3 (International DILI Expert Working Group) induced by ribociclib. Routine liver enzyme testing during therapy, immediate hepatologic work-up and treatment interruption in case of liver enzyme elevation are highly recommended. Corticosteroid treatment should be considered in cases of severe necroinflammation

    PARP1 is required for adhesion molecule expression in atherogenesis

    Get PDF
    Aims Atherosclerosis is the leading cause of death in Western societies and a chronic inflammatory disease. However, the key mediators linking recruitment of inflammatory cells to atherogenesis remain poorly defined. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme, which plays a role in acute inflammatory diseases. Methods and results In order to test the role of PARP in atherogenesis, we applied chronic pharmacological PARP inhibition or genetic PARP1 deletion in atherosclerosis-prone apolipoprotein E-deficient mice and measured plaque formation, adhesion molecules, and features of plaque vulnerability. After 12 weeks of high-cholesterol diet, plaque formation in male apolipoprotein E-deficient mice was decreased by chronic inhibition of enzymatic PARP activity or genetic deletion of PARP1 by 46 or 51%, respectively (P < 0.05, n ≥ 9). PARP inhibition or PARP1 deletion reduced PARP activity and diminished expression of inducible nitric oxide synthase, vascular cell adhesion molecule-1, and P- and E-selectin. Furthermore, chronic PARP inhibition reduced plaque macrophage (CD68) and T-cell infiltration (CD3), increased fibrous cap thickness, and decreased necrotic core size and cell death (P < 0.05, n ≥ 6). Conclusion Our data provide pharmacological and genetic evidence that endogenous PARP1 is required for atherogenesis in vivo by increasing adhesion molecules with endothelial activation, enhancing inflammation, and inducing features of plaque vulnerability. Thus, inhibition of PARP1 may represent a promising therapeutic target in atherosclerosi

    Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation

    Get PDF
    Aims Epidemiological studies report an inverse association between plant-derived dietary α-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model. Methods and results Eight-week-old male apolipoprotein E knockout (ApoE−/−) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-γ, interleukin-4, and tumour necrosis factor α (TNFα) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the n−3 long chain fatty acids (LC n−3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFα. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA. Conclusion Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC n−3 F
    corecore