13,827 research outputs found

    The impact of spatial fluctuations in the ultra-violet background on intergalactic carbon and silicon

    Get PDF
    Spatial inhomogeneities in the spectral shape of the ultra-violet background (UVB) at the tail-end of HeII reionisation are thought to be the primary cause of the large fluctuations observed in the HeII to HI Ly-a forest optical depth ratio, tau_HeII/tau_HI, at z~2-3. These spectral hardness fluctuations will also influence the ionisation balance of intergalactic metals; we extract realistic quasar absorption spectra from a large hydrodynamical simulation to examine their impact on intergalactic SiIV and CIV absorbers. Using a variety of toy UVB models, we find that while the predicted spatial inhomogeneities in spectral hardness have a significant impact on tau_HeII/tau_HI, the longer mean free path for photons with frequencies above and below the HeII ionisation edge means these fluctuations have less effect on the SiIV and CIV ionisation balance. Furthermore, UVB models which produce the largest fluctuations in specific intensity at the HeII ionisation edge also have the softest ionising spectra, and thus result in photo-ionisation rates which are too low to produce significant fluctuations in the observed tau_SiIV/tau_CIV. Instead, we find spatial variations in the IGM metallicity will dominate any scatter in tau_SiIV/tau_CIV. Our results suggest that observational evidence for homogeneity in the observed tau_SiIV/tau_CIV distribution does not rule out the possibility of significant fluctuations in the UVB spectral shape at z~2-3. On the other hand, the scatter in metallicity inferred from observations of intergalactic CIV and SiIV absorption at z~2-3 using spatially uniform ionisation corrections is likely intrinsic, and therefore provides a valuable constraint on intergalactic metal enrichment scenarios at these redshifts.Comment: 13 pages, 7 figures, accepted to MNRA

    Orbital currents, anapoles, and magnetic quadrupoles in CuO

    Full text link
    We show that orbital currents in a CuO2 plane, if present, should be described by two independent parity and time-reversal odd order parameters, a toroidal dipole (anapole) and a magnetic quadrupole. Based on this, we derive the resonant X-ray diffraction cross-section for monoclinic CuO at the antiferromagnetic wavevector and show that the two order parameters can be disentangled. From our analysis, we examine a recent claim of detecting anapoles in CuO.Comment: 7 pages, 5 figure

    The magnetic ground state of Sr2IrO4 and implications for second-harmonic generation

    Full text link
    The currently accepted magnetic ground state of Sr2IrO4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. Here, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the non-magnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+ state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. We suggest experiments that could be performed to test these various possibilities, and also address the important issue of the suppression of the RXS intensity at the L2 edge.Comment: 28 pages, 8 figures, v3 - an expanded discussion of the origin of the SHG signa

    A Face Can Launch a Thousand Shares—and an 0.80% Abnormal Return

    Get PDF
    In this paper we examine the market reaction—price and volume—to the appearance of a firm in the Who’s News column of The Wall Street Journal. We differentiate between those firms whose articles are accompanied by a picture of an executive and a control set of firms whose articles on the same day are not accompanied by a picture. The results show a more pronounced market reaction to the “cum picture” articles, consistent with the incomplete information theory of Merton [1987] and the heuristic-based familiarity hypothesis. There is no evidence of significant long-run abnormal performance for the sample firms

    The nature of the tensor order in Cd2Re2O7

    Full text link
    The pyrochlore metal Cd2Re2O7 has been recently investigated by second-harmonic generation (SHG) reflectivity. In this paper, we develop a general formalism that allows for the identification of the relevant tensor components of the SHG from azimuthal scans. We demonstrate that the secondary order parameter identified by SHG at the structural phase transition is the x2-y2 component of the axial toroidal quadrupole. This differs from the 3z2-r2 symmetry of the atomic displacements associated with the I-4m2 crystal structure that was previously thought to be its origin. Within the same formalism, we suggest that the primary order parameter detected in the SHG experiment is the 3z2-r2 component of the magnetic quadrupole. We discuss the general mechanism driving the phase transition in our proposed framework, and suggest experiments, particularly resonant X-ray scattering ones, that could clarify this issue.Comment: some additions and clarifications adde

    On the nature of the magnetic ground-state wave function of V_2O_3

    Full text link
    After a brief historical introduction, we dwell on two recent experiments in the low-temperature, monoclinic phase of V_2O_3: K-edge resonant x-ray scattering and non-reciprocal linear dichroism, whose interpretations are in conflict, as they require incompatible magnetic space groups. Such a conflict is critically reviewed, in the light of the present literature, and new experimental tests are suggested, in order to determine unambiguously the magnetic group. We then focus on the correlated, non-local nature of the ground-state wave function, that is at the basis of some drawbacks of the LDA+U approach: we singled out the physical mechanism that makes LDA+U unreliable, and indicate the way out for a possible remedy. Finally we explain, by means of a symmetry argument related to the molecular wave function, why the magnetic moment lies in the glide plane, even in the absence of any local symmetry at vanadium sites.Comment: 7 pages, 1 figur

    X-ray Dichroism and the Pseudogap Phase of Cuprates

    Full text link
    A recent polarized x-ray absorption experiment on the high temperature cuprate superconductor Bi2Sr2CaCu2O8 indicates the presence of broken parity symmetry below the temperature, T*, where a pseudogap appears in photoemission. We critically analyze the x-ray data, and conclude that a parity-breaking signal of the kind suggested is unlikely based on the crystal structures reported in the literature. Possible other origins of the observed dichroism signal are discussed. We propose x-ray scattering experiments that can be done in order to determine whether such alternative interpretations are valid or not.Comment: final version to be published in Phys Rev B: some calculational details added, clarification of XNLD contamination and biaxiality, more discussion on possible space groups and previous optics result
    • …
    corecore