24 research outputs found

    Urban sustainability assessment of neighborhoods in Lombardy

    Get PDF
    Abstract The paper presents a contextualized system useful in the decision-making of Public Administrators for analysis and actions concerning urban sustainability and for monitoring neighborhood transformation processes. The system is developed with an approach made up by Inputs (available data from standards and laws and state-of-the-art), Controls (i.e. technical skills of Public Administrators) and Mechanisms (know-how and software used) which implement Outputs, the main elements of the system: Sustainability indicators, Benchmarks and Scores. The set of indicators chosen allows to consider many aspects of environmental sustainability as Resource Consumption (Energy, Materials, Water, Soil) and Environmental Impacts (Pollutant Emissions, Wastes and Vulnerability). The objective parameters of the indicators are based on a benchmarking activity in relation to the Lombardy context and in order to provide reachable target performance. Finally, a baseline of weighted scores of indicators is proposed to allow to reach a final overall score of sustainability of the neighborhood

    How to control the Indoor Environmental Quality through the use of the Do-It-Yourself approach and new pervasive technologies

    Get PDF
    Abstract The article describes the results of the "Open-source Smart lamp" aimed at designing and developing a smart appliance that integrates a wireless communication system for building automation, following the maker movement philosophy. The device is able to get an overview of the potential of a nearable device equipped with a variety of sensors to broadcast digital data for the management and control of the Indoor Environmental Quality (IEQ) of the built environment. The Smart Lamp installed in a real office in order to test the reliability of the device in the management of the lighting and air quality levels

    Estimation of building energy performance for local energy policy at urban scale

    Get PDF
    Abstract Cities play a key role in sustainability policies aimed at reducing environmental impacts and increasing energy efficiency in the building sector. At urban level, the analysis models are split in bottom-up and top-down types as a function of the methodological approach of input data processing, aggregated in the first case and disaggregated in the second one. The present paper describes the methodological approach adopted for the implementation of a bottom-up model able to estimate the energy performance of buildings and to define an energy diagnosis process at urban scale. Starting from the information provided by tools available at the Public Authorities and at the most relevant statistical studies on the national energy market, the model provides an estimation of the energy consumption and performance of buildings. The model is applied to a real district of Bologna and the derived spatial database allows the energy performances of buildings to be mapped

    Application of IoT and Machine Learning techniques for the assessment of thermal comfort perception.

    Get PDF
    Abstract Thermal comfort is traditionally assessed by using the PMV index defined according to the EN ISO 7730:2005 where the user passively interacts with the surrounding environment considering a physic-based model built on a steady-state thermal energy balance equation. The thermal comfort satisfaction is a holistic concept comprising behavioral, physiological and psychological aspects. This article describes a workflow for the assessment of the thermal conditions of users through the analysis of their specific psychophysical conditions overcoming the limitation of the physic-based model in order to investigate and consider other possible relations between the subjective and objective variables

    How to Define the Urban Comfort in the Era of Smart Cities through the Use of the Do-It-Yourself Approach and New Pervasive Technologies

    No full text
    The “Smart” concept applied to the cities intends to improve different fields of the urban context and in particular the life quality of citizens. An important part of the overall well-being is the urban comfort, defined as a function of some environmental parameters. The knowledge and the widespread collection of the geospatial information allow the implementation of a model able to estimate the urban comfort level. In this respect, a dynamic monitoring system was developed following the Do It Yourself (DIY) approach that allow to collect and send data to a cloud server. The article describes the implementation phases of the device, a first experimental application conducted in Milan and a critical analysis of this approach

    Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis

    No full text
    The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board’s memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications

    An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant

    No full text
    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display

    An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices

    No full text
    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment

    Correlation between Indoor Environmental Data and Biometric Parameters for the Impact Assessment of a Living Wall in a ZEB Lab

    No full text
    Users’ satisfaction in indoor spaces plays a key role in building design. In recent years, scientific research has focused more and more on the effects produced by the presence of greenery solutions in indoor environments. In this study, the Internet of Things (IoT) concept is used to define an effective solution to monitor indoor environmental parameters, along with the biometric data of users involved in an experimental campaign conducted in a Zero Energy Building laboratory where a living wall has been installed. The growing interest in the key theory of the IoT allows for the development of promising frameworks used to create datasets usually managed with Machine Learning (ML) approaches. Following this tendency, the dataset derived by the proposed infield research has been managed with different ML algorithms in order to identify the most suitable model and influential variables, among the environmental and biometric ones, that can be used to identify the plant configuration. The obtained results highlight how the eXtreme Gradient Boosting (XGBoost)-based model can obtain the best average accuracy score to predict the plant configuration considering both a selection of environmental parameters and biometric data as input values. Moreover, the XGBoost model has been used to identify the users with the highest accuracy considering a combination of picked biometric and environmental features. Finally, a new Green View Factor index has been introduced to characterize how greenery has an impact on the indoor space and it can be used to compare different studies where green elements have been used
    corecore