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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Thermal comfort is traditionally assessed by using the PMV index defined according to the EN ISO 7730:2005 where the user 
passively interacts with the surrounding environment considering a physic-based model built on a steady-state thermal energy 
balance equation. The thermal comfort satisfaction is a holistic concept comprising behavioral, physiological and psychological 
aspects. This article describes a workflow for the assessment of the thermal conditions of users through the analysis of their 
specific psychophysical conditions overcoming the limitation of the physic-based model in order to investigate and consider 
other possible relations between the subjective and objective variables. 
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1. Introduction 

Recent studies show how the Internet of Things (IoT) approach has been applied to the physical environment 
aimed at improving the user’s satisfaction [1] and innovative projects were born in order to create smart environment 
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based on open source and hardware devices for the optimization of different aspects of the Indoor Environmental 
Quality, such as: Thermal Comfort (TC) [2], illuminance level and air quality [3]. The so reported example of 
ubiquitous sensing has allowed to store an enormous amount of data [4]. A branch of Artificial Intelligence (AI), the 
Machine Learning (ML) [5], can automatically detect patterns among the collected data, predict future trend or 
define decision-making rules [6]. The Trends service [7] by Google allows to verify the rising interest of the 
previous key topics (IoT, ML and AI) starting from 2015 (Figure 1). 

 

 

Fig. 1. Google trends for Artificial Intelligence, Machine Learning and IoT. 

The article describes a new workflow that connects the theme of ML and IoT with that of TC through an in-field 
assessment campaign.  

1.1. Case study 

 The system has been installed on the desktop of eight workstations of a two-stories office building located in San 
Giuliano Milanese, near Milan (Italy) and 8 individuals are involved in the survey. The workstations are placed in 5 
offices, 3 on the ground floor and 2 on the first floor of the building (Figure 2). 

 

 

Fig. 2. Workstations: (a) first floor; (b) ground floor. With black dot the point where nearable are installed 
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Table 1 reports the personal data of the involved users and the periods of the tests and related information about 
the weather data. All subjects gave their informed consent for inclusion before they participated in the study. 

Table 1. User and weather data 

User Age 
[y] 

Weight 
[kg] 

Height 
[m] 

Gender 
[-] 

Profession 
[-] 

Test period 
[-] 

Air temperature 
[°C] Avg. (St.dv) 

Relative humidity 
[%] Avg. (St.dv) 

Solar radiation 
[W/m2] Avg. (St.dv) 

1 61 61.4 1.75 Male Senior 
researcher 

Nov 13-17 6.2 (3.9) 85.7 (19.6) 222.0 (153.9) 

2 39 81 1.78 Male Researcher Nov 6-10 9.3 (1.5) 98.1 (3.5) 102.8 (101) 

3 35 85 1.79 Male Researcher Nov 6-10 9.3 (1.5) 98.1 (3.5) 102.8 (101) 

4 43 46 1.64 Female Researcher Nov 20-24 7.2 (2.8) 96.2 (8.4) 143.4 (129.8) 

5 29 60 1.60 Female Junior 
researcher 

Nov 27-30 2.5 (3.1) 88.8 (20.1) 172.0 (164) 

6 37 57 1.79 Female Researcher Nov 20-24 7.2 (2.8) 96.2 (8.4) 143.4 (129.8) 

7 33 80.2 1.91 Male Technician Nov 27-30 2.5 (3.1) 88.8 (20.1) 172.0 (164) 

8 35 70 1.77 Male Researcher Nov 13-17 6.2 (3.9) 85.7 (19.6) 222.0 (153.9) 

 

1.2. Workflow structure 

Figure 3 reports the defined workflow for the assessment of TC considering a complete set of environmental and 
biometric data, acquired by an IoT system composed by a wearable and nearable device. The first one is the 
Empatica E4 wristband [8], a medical device class II according to the FDA 21 CFR Part 860.3, equipped with the 
following sensors: 

• a Photoplethysmography (PPG) sensor for the detection of the heart rate (HR); 
• an Electrodermal Activity (EDA) sensor; 
• an infrared thermopile; 
• a 3-Axis accelerometer. 
 
The second one is based on low-cost sensors and open-source hardware able to monitor indoor environmental 

parameters (air temperature, relative humidity, radiant temperature, air velocity, CO2 concentration, illuminance 
level). These variables are useful to assess different aspects of the Indoor Environmental Quality (IEQ). More details 
are available in [9, 10]. The nearable was installed at a distance of less than 40 cm from the worker in order to 
consider the environmental parameters as close as possible to the user.  

 

 

Fig. 3. Workflow of the integrated approach for the assessment of thermal comfort. 
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The biometric data monitored by the wearable device are processed using a noise detection ML algorithm that 
allows to automatically detect EDA artefacts [11, 12]. Among the possible reasons of the presence of noise in a 
wearable device outputs, the most probably is the variation in the contact between the skin and the recording 
electrode caused by excessive movement or adjustment of the device. Through ML algorithm the raw data, acquired 
with a sampling frequency of 4 Hz, are divided in periods of 5 seconds and then filtered considering a noise 
classification number equal to -1 (noise data), or 1 (clean data). Then the environmental data and users’ feedback 
(derived from a google spreadsheet where all data inputted by users on a web multiplatform survey based on a 
Google Form model are automatically collected), are merged with the filtered biometric dataset considering only the 
clean data and related time. Besides all data are used for a parametric analysis through a set of open source plug-in 
[13, 14] for Grasshopper, a graphical algorithm editor tightly integrated with Rhinoceros 3-D modeling tools. This 
step is useful to define the optimal personal thermal comfort defined (Figure 4): the comfort zones personalized for 
each user are based on the environmental data averaged over a period of a minute at the time when the users have 
felt a neutral thermal comfort sensation. 

 

  

Fig. 4. Personalized Graphic Comfort Zone for all the users 
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Finally all data are used by a Python script for ML purpose. The following case study allows to verify the 
application of the workflow considering an in-field assessment. 

2. Results and discussion 

The workflow reported above allows to filter the dataset considering the output of the EDA explorer algorithm.  
The heatmap reported in Figure 5 allows to verify the consistencies of the defined dataset considering all filtered 
data of the users 1, 2, 3, 5, 6, 7 and 8. The data of user 4 have not been considered due to a very high noise level 
in the biometric monitored data. 
 

 

Fig. 5. Output dataset and related parameters: in yellow – null data, in blue – non-null data. 

It is possible to highlight how the dataset is completely imbalanced: it is not possible to use the TSV as a target 
value in a ML approach. To overcome the limit of an imbalanced dataset due to a small number of users’ 
feedback in relation to the environmental and biometric data, the ML is applied to identify the users and 
consequently their TC perception. Starting from the basic dataset it is possible to define a new one with the 
characteristics reported in Table 2.   

Table 2. Dataset info 

Number Data description U.M. Number  Null count Data type Model feature importance 

0 Z-axis [g] 8959 0 Double precision float 0.01897298 

1 Y-axis [g] 8959 0 Double precision float 0.03128233 

2 X-axis [g] 8959 0 Double precision float 0.04648461 

3 Tskin [°C] 8959 0 Double precision float 0.11264711 

4 EDA [S] 8959 0 Double precision float 0.1108617 

5 HR [bpm] 8959 0 Double precision float 0.01466359 

6 RH [%] 8959 0 Double precision float 0.17893774 

7 To [°C] 8959 0 Double precision float 0.16441891 

8 CO2 [ppm] 8959 0 Double precision float 0.06317967 

9 E [lx] 8959 0 Double precision float 0.25855138 

10 User [-] 8959 0 Categorical object - 

 
 

6 Author name / Energy Procedia 00 (2018) 000–000 

The features of the dataset that contribute most to the prediction of user profile are automatically selected in order 
to: reduce overfitting and training time and improve accuracy. For this purpose the instances from 0 to 9 
according to the previous Table 2 are considered. The importance of each feature useful to define the target, 
number 10, user profile, is defined considering an Extra Trees Classifier that identify an importance score for 
each attribute. Only the variables with a score higher than 0.11 have been considered: Tskin, EDA, RH, To and E. 
Figure 6 reports a parallel coordinates plot that display a qualitative correlation among all reference variables 
[15]. 
 

 

Fig. 6. Correlation among all considered parameters 
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It is possible to highlight how the Tskin and EDA values are strictly linked to the user profile: so as, for example, 
if the values of user 2 are compared with those of user 3, it is possible to verify how the human body reacts 
differently to external stimuli despite the relative humidity and the air temperature are quite comparable for this 
specific cases. The same consideration can be done if trends of users 5 and 7 are compared. The idea is that it is 
possible to define a personalized profile considering both biometric and environmental data. Excluding linear 
dependencies among the variables, four different non-linear algorithms are considered: K-Nearest Neighbors 
(KNN), Classification and Regression Trees (CART), Gaussian Naive Bayes (NB), Support Vector Machines 
(SVM). The metric of ‘accuracy’ is used to evaluate the models defined as the ratio of the number of correctly 
predicted instances in divided by the total number of instances in the dataset. The k-fold cross validation (k = 10) 
is used to evaluate the performances of the different algorithms on the dataset (Table 3). 

Table 3. Algorithms accuracy comparison 

User Avg. St.dev. 
KNN 0.959 0.006 

CART 0.997 0.002 
NB 0.953 0.007 

SVM 0.979 0.006 
 

Among the models, the CART algorithm, a non-parametric supervised learning method that predicts the value of 
a target variable by learning simple decision rules inferred from the data features, has the highest average 
estimation accuracy (0.997) and the lowest standard deviation (0.002). 
Table 4 shows the classification report summarizing the results as a final accuracy score of the CART model 
directly on the validation set. 

Table 4. Prediction on validation dataset with CART algorithm 

User Precision Recall F1score Support 
1 1.00 1.00 1.00 429 
2 1.00 1.00 1.00 60 
3 1.00 1.00 1.00 178 
4 - - - - 
5 1.00 1.00 1.00 95 
6 1.00 1.00 1.00 221 
7 1.00 1.00 1.00 260 
8 1.00 1.00 1.00 549 

Avg/Tot 1.00 1.00 1.00 1792 
 

3. Conclusions and future work 

The proposed framework has allowed to detect the indoor environmental variables close to users, in addition to 
the biometric parameters and users’ feedback. This approach has permitted to highlight TC differences among users, 
optimizing the control strategy and identifying the most relevant parameters for users recognition. 

The future developments of this study may be focused, on one hand, on a longer detection of both environmental 
parameters and users’ feedback in order to set up a dataset able to predict a customized TC. On the other hand, the 
monitoring of further variables could be implemented in order to apply the methodology in other IEQ fields [16] like 
ILQ, IAQ and Acoustic comfort [17, 18, 19] and their interaction with the energy performance of buildings [20, 21, 
22]. 
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