12 research outputs found
Metformin Impairs Glutamine Metabolism and Autophagy in Tumour Cells
Metformin has been shown to inhibit glutaminase (GLS) activity and ammonia accumulation thereby reducing the risk of hepatic encephalopathy in type 2 diabetic patients. Since tumour cells are addicted to glutamine and often show an overexpression of glutaminase, we hypothesize that the antitumoral mechanism of metformin could be ascribed to inhibition of GLS and reduction of ammonia and ammonia-induced autophagy. Our results show that, in different tumour cell lines, micromolar doses of metformin prevent cell growth by reducing glutamate, ammonia accumulation, autophagy markers such as MAP1LC3B-II and GABARAP as well as degradation of long-lived proteins. Reduced autophagy is then accompanied by increased BECN1/BCL2 binding and apoptotic cell death. Interestingly, GLS-silenced cells reproduce the effect of metformin treatment showing reduced MAP1LC3B-II and GABARAP as well as ammonia accumulation. Since metformin is used as adjuvant drug to increase the efficacy of Cisplatin-based neoadjuvant chemotherapy, we co-treated tumour cells with micromolar doses of metformin in the presence of cisplatin observing a marked reduction of MAP1LC3B-II and an increase of caspase 3 cleavage. In conclusion, our work demonstrates that the anti-tumoral action of metformin is due to the inhibition of glutaminase and autophagy and could be used to improve the efficacy of chemotherapy
Paul Angel photograph, Great Yarmouth Pleasure Beach, 1982.
Botton Brothers' Rock-o-plane - RP11 - photographed June 1982
SIRT5 Inhibition Induces Brown Fat-Like Phenotype in 3T3-L1 Preadipocytes
Brown adipose tissue (BAT) activity plays a key role in regulating systemic energy. The activation of BAT results in increased energy expenditure, making this tissue an attractive pharmacological target for therapies against obesity and type 2 diabetes. Sirtuin 5 (SIRT5) affects BAT function by regulating adipogenic transcription factor expression and mitochondrial respiration. We analyzed the expression of SIRT5 in the different adipose depots of mice. We treated 3T3-L1 preadipocytes and mouse primary preadipocyte cultures with the SIRT5 inhibitor MC3482 and investigated the effects of this compound on adipose differentiation and function. The administration of MC3482 during the early stages of differentiation promoted the expression of brown adipocyte and mitochondrial biogenesis markers. Upon treatment with MC3482, 3T3-L1 adipocytes showed an increased activation of the AMP-activated protein kinase (AMPK), which is known to stimulate brown adipocyte differentiation. This effect was paralleled by an increase in autophagic/mitophagic flux and a reduction in lipid droplet size, mediated by a higher lipolytic rate. Of note, MC3482 increased the expression and the activity of adipose triglyceride lipase, without modulating hormone-sensitive lipase. Our findings reveal that SIRT5 inhibition stimulates brown adipogenesis in vitro, supporting this approach as a strategy to stimulate BAT and counteract obesity