14,394 research outputs found

    Uniformization, Unipotent Flows and the Riemann Hypothesis

    Full text link
    We prove equidistribution of certain multidimensional unipotent flows in the moduli space of genus gg principally polarized abelian varieties (ppav). This is done by studying asymptotics of ΓgSp(2g,Z)\pmb{\Gamma}_{g} \sim Sp(2g,\mathbb{Z})-automorphic forms averaged along unipotent flows, toward the codimension-one component of the boundary of the ppav moduli space. We prove a link between the error estimate and the Riemann hypothesis. Further, we prove Γgr\pmb{\Gamma}_{g - r} modularity of the function obtained by iterating the unipotent average process rr times. This shows uniformization of modular integrals of automorphic functions via unipotent flows

    Mechanics of bio–hybrid systems

    Get PDF
    Bio–hybrid system are morphing structures whose shaping can be electrically driven and strongly depends on the geometrical and mechanical characteristics of the system. The estimation of those characteristics which allow for getting target shapes is a great challenge. We present and discuss an approximate model for narrow bio–hybrid strips which works well in plane bending. A generalization towards three–layers bio–hybrid system is presented

    Electromagnetic Formation Flying with Eccentric Reference Orbits

    Get PDF
    Over the last decade, a considerable amount of research work has been done in the area of spacecraft formation flight, with particular emphasis on control techniques using thruster-based systems. Nevertheless, thrusters require propellant to work and this limit the lifetime of the mission. Electromagnetic Formation Flight (EMFF) is presented in this paper as a fuel-less strategy to control spacecraft formations by means of electromagnets. In EMFF, spacecraft can be equipped with one or more coils and reactions wheels which could be arranged in several combinations according to mission requirements. An electric current flows through the coils in order to produce a magnetic dipole in a specific direction. The magnetic field of a spacecraft reacts against the magnetic dipoles of the others, generating forces and torques which in turn could be used as control inputs. The main objective of this paper is to provide a formulation for EMFF when a formation is moving in eccentric reference orbits and for this purpose, the Tschauner and Hempel model will be used. Results are presented after analysing different formation scenarios providing the necessary magnetic requirements for station keeping and resolving which cases are suitable to be controlled by this technology. High-Temperature Semiconductor (HTS) plays an important role in EMFF and for that reason the paper also investigates the correlation of the magnetic force and the coil mass, which in turn affects the total mass of the spacecraft

    The pole-sitter mission concept : an overview of recent developments and possible future applications

    Get PDF
    The paper provides a survey of novel mission concepts for continuous, hemispheric polar observation and direct-link polar telecommunications. It is well known that these services cannot be provided by traditional platforms: geostationary satellites do not cover high-latitude regions, while low- and medium-orbit Sun-synchronous spacecraft only cover a narrow swath of the Earth at each passage. Concepts that are proposed in the literature are described, including the pole-sitter concept (in which a spacecraft is stationary above the pole), spacecraft in artificial equilibrium points in the Sun-Earth system and non-Keplerian polar Molniya orbits. Additionally, novel displaced eight-shaped orbits at Lagrangian points are presented. For many of these concepts, a continuous acceleration is required and propulsion systems include solar electric propulsion, solar sail and a hybridisation of the two. Advantages and drawbacks of each mission concept are assessed, and a comparison in terms of high-latitude coverage and distance, spacecraft mass, payload and lifetime is presented. Finally, the paper will describe a number of potential applications enabled by these concepts, focusing on polar Earth observation and telecommunications

    Structure and energetics of solvated ferrous and ferric ions: Car-Parrinello molecular dynamics in the DFT+U formalism

    Full text link
    We implemented a rotationally-invariant Hubbard U extension to density-functional theory in the Car-Parrinello molecular dynamics framework, with the goal of bringing the accuracy of the DFT+U approach to finite-temperature simulations, especially for liquids or solids containing transition-metal ions. First, we studied the effects on the Hubbard U on the static equilibrium structure of the hexa-aqua ferrous and ferric ions, and the inner-sphere reorganization energy for the electron-transfer reaction between aqueous ferrous and ferric ions. It is found that the reorganization energy is increased, mostly as a result of the Fe-O distance elongation in the hexa-aqua ferrous ion. Second, we performed a first-principles molecular dynamics study of the solvation structure of the two aqueous ferrous and ferric ions. The Hubbard term is found to change the Fe-O radial distribution function for the ferrous ion, while having a negligible effect on the aqueous ferric ion. Moreover, the frequencies of vibrations between Fe and oxygen atoms in the first-solvation shell are shown to be unaffected by the Hubbard corrections for both ferrous and ferric ions.Comment: 13 pages, 2 figures, 1 table. Submitted to Journal of Electroanalytical Chemistr

    Optimal cloning of coherent states by linear optics

    Get PDF
    We describe an optical scheme for optimal Gaussian n to m cloning of coherent states. The scheme, which generalizes a recently demonstrated scheme for 1 to 2 cloning, involves only linear optical components and homodyne detection.Comment: 5 pages, 4 figures, presented at the 13th Central European Workshop on Quantum Optics, May 23-27 2006, Vienna, Austria (Proceedings will be published in "Acta Physica Hungarica"); reference added, Eq. (8) correcte

    Measuring the Temperature of a Mesoscopic Quantum Electron System by means of Single Electron Statistics

    Full text link
    We measure the temperature of a mesoscopic system consisting of an ultra-dilute two dimensional electron gas at the Si/SiO2Si/SiO_2 interface in a metal-oxide-semiconductor field effect transistor (MOSFET) quantum dot by means of the capture and emission of an electron in a point defect close to the interface. Contrarily to previous reports, we show that the capture and emission by point defects in Si n-MOSFETs can be temperature dependent down to 800 mK. As the finite quantum grand canonical ensemble model applies, the time domain charge fluctuation in the defect is used to determine the temperature of the few electron gas in the channel.Comment: 4 Figures (color

    Old stellar counter-rotating components in early-type galaxies from elliptical-spiral mergers

    Full text link
    We investigate, by means of numerical simulations, the possibility of forming counter-rotating old stellar components by major mergers between an elliptical and a spiral galaxy. We show that counter-rotation can appear both in dissipative and dissipationless retrograde mergers, and it is mostly associated to the presence of a disk component, which preserves part of its initial spin. In turn, the external regions of the two interacting galaxies acquire part of the orbital angular momentum, due to the action of tidal forces exerted on each galaxy by the companion.Comment: 6 pages, 15 figures. Accepted on Astronomy & Astrophysic
    corecore