36 research outputs found

    A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets

    Get PDF
    We present a targeted search for narrow-band (< 5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T_eq > 230 K, stars with 5 or more detected candidates or stars with a super-Earth (R_p 50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between Feb--Apr 2011 and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1-2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 x 10^21 erg s^-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be < 10^-6 M_solar^-1. Here we describe our observations, data reduction procedures and results.Comment: Accepted to the Astrophysical Journa

    New SETI Sky Surveys for Radio Pulses

    Full text link
    Berkeley conducts 7 SETI programs at IR, visible and radio wavelengths. Here we review two of the newest efforts, Astropulse and Fly's Eye. A variety of possible sources of microsecond to millisecond radio pulses have been suggested in the last several decades, among them such exotic events as evaporating primordial black holes, hyper-flares from neutron stars, emissions from cosmic strings or perhaps extraterrestrial civilizations, but to-date few searches have been conducted capable of detecting them. We are carrying out two searches in hopes of finding and characterizing these mu-s to ms time scale dispersed radio pulses. These two observing programs are orthogonal in search space; the Allen Telescope Array's (ATA) "Fly's Eye" experiment observes a 100 square degree field by pointing each 6m ATA antenna in a different direction; by contrast, the Astropulse sky survey at Arecibo is extremely sensitive but has 1/3,000 of the instantaneous sky coverage. Astropulse's multibeam data is transferred via the internet to the computers of millions of volunteers. These computers perform a coherent de-dispersion analysis faster than the fastest available supercomputers and allow us to resolve pulses as short as 400 ns. Overall, the Astropulse survey will be 30 times more sensitive than the best previous searches. Analysis of results from Astropulse is at a very early stage. The Fly's Eye was successfully installed at the ATA in December of 2007, and to-date approximately 450 hours of observation has been performed. We have detected three pulsars and six giant pulses from the Crab pulsar in our diagnostic pointing data. We have not yet detected any other convincing bursts of astronomical origin in our survey data. (Abridged)Comment: 9 pages, 6 figures, Accepted to Acta Astronautica "Special Issue: Life Signatures

    The Breakthrough Listen Search for Intelligent Life: A 3.95-8.00 GHz Search for Radio Technosignatures in the Restricted Earth Transit Zone

    Full text link
    We report on a search for artificial narrowband signals of 20 stars within the restricted Earth Transit Zone as a part of the ten-year Breakthrough Listen (BL) search for extraterrestrial intelligence. The restricted Earth Transit Zone is the region of the sky from which an observer would see the Earth transit the Sun with an impact parameter of less than 0.5. This region of the sky is geometrically unique, providing a potential way for an extraterrestrial intelligence to discover the Solar System. The targets were nearby (7-143 pc) and the search covered an electromagnetic frequency range of 3.95-8.00 GHz. We used the Robert C. Byrd Green Bank Telescope to perform these observations with the standard BL data recorder. We searched these data for artificial narrowband (∼\simHz) signals with Doppler drift rates of ±20\pm 20 Hz s−1^{-1}. We found one set of potential candidate signals on the target HIP 109656 which was then found to be consistent with known properties of anthropogenic radio frequency interference. We find no evidence for radio technosignatures from extraterrestrial intelligence in our observations. The observing campaign achieved a minimum detectable flux which would have allowed detections of emissions that were 10−310^{-3} to 0.880.88 times as powerful as the signaling capability of the Arecibo radar transmitter, for the nearest and furthest stars respectively. We conclude that at least 8%8\% of the systems in the restricted Earth Transit Zone within 150 pc do not possess the type of transmitters searched in this survey. To our knowledge, this is the first targeted search for extraterrestrial intelligence of the restricted Earth Transit Zone. All data used in this paper are publicly available via the Breakthrough Listen Public Data Archive (http://seti.berkeley.edu/bldr2).Comment: 17 pages, 8 figures, submitted to Ap

    No bursts detected from FRB121102 in two 5-hour observing campaigns with the Robert C. Byrd Green Bank Telescope

    Get PDF
    Here, we report non-detection of radio bursts from Fast Radio Burst FRB 121102 during two 5-hour observation sessions on the Robert C. Byrd 100-m Green Bank Telescope in West Virginia, USA, on December 11, 2017, and January 12, 2018. In addition, we report non-detection during an abutting 10-hour observation with the Kunming 40-m telescope in China, which commenced UTC 10:00 January 12, 2018. These are among the longest published contiguous observations of FRB 121102, and support the notion that FRB 121102 bursts are episodic. These observations were part of a simultaneous optical and radio monitoring campaign with the the Caltech HIgh- speed Multi-color CamERA (CHIMERA) instrument on the Hale 5.1-m telescope.Comment: 1 table, Submitted to RN of AA

    Current and Nascent SETI Instruments

    Get PDF
    Here we describe our ongoing efforts to develop high-performance and sensitive instrumentation for use in the search for extra-terrestrial intelligence (SETI). These efforts include our recently deployed Search for Extraterrestrial Emissions from Nearby Developed Intelligent Populations Spectrometer (SERENDIP V.v) and two instruments currently under development; the Heterogeneous Radio SETI Spectrometer (HRSS) for SETI observations in the radio spectrum and the Optical SETI Fast Photometer (OSFP) for SETI observations in the optical band. We will discuss the basic SERENDIP V.v instrument design and initial analysis methodology, along with instrument architectures and observation strategies for OSFP and HRSS. In addition, we will demonstrate how these instruments may be built using low-cost, modular components and programmed and operated by students using common languages, e.g. ANSI C.Comment: 12 pages, 5 figures, Original version appears as Chapter 2 in "The Proceedings of SETI Sessions at the 2010 Astrobiology Science Conference: Communication with Extraterrestrial Intelligence (CETI)," Douglas A. Vakoch, Edito

    Status of the UC-Berkeley SETI Efforts

    Get PDF
    We summarize radio and optical SETI programs based at the University of California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths using an automated 30 inch telescope. The ongoing SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. SETI@home uses the desktop computers of volunteers to analyze over 160 TB of data at taken at Arecibo looking for two types of continuous wave signals and two types of pulsed signals. A version to be released this summer adds autocorrelation analysis to look for complex wave forms that have been repeated (and overlayed) after a short delay. SETI@home will soon be processing data of Kepler exoplanet systems collected at the GBT. The Astropulse project is the first SETI search for μ\mus time scale dispersed pulses in the radio spectrum. We recently reobserved 114 sky locations where microsecond pulses were detected. This data is in process of being transferred to Berkeley for analysis.Comment: 8 pages, including 1 figure. Presented at SPIE Conf. 8152, San Diego, CA, Aug 25, 201

    Breakthrough Listen follow-up of the reported transient signal observed at the Arecibo Telescope in the direction of Ross 128

    Get PDF
    We undertook observations with the Green Bank Telescope, simultaneously with the 300 m telescope in Arecibo, as a follow-up of a possible flare of radio emission from Ross 128. We report here the non-detections from the GBT observations in C band (4–8 GHz), as well as non-detections in archival data at L band (1.1–1.9 GHz). We suggest that a likely scenario is that the emission comes from one or more satellites passing through the same region of the sky

    A 4-8 GHz Galactic Center Search for Periodic Technosignatures

    Full text link
    Radio searches for extraterrestrial intelligence have mainly targeted the discovery of narrowband continuous-wave beacons and artificially dispersed broadband bursts. Periodic pulse trains, in comparison to the above technosignature morphologies, offer an energetically efficient means of interstellar transmission. A rotating beacon at the Galactic Center (GC), in particular, would be highly advantageous for galaxy-wide communications. Here, we present blipss, a CPU-based open-source software that uses a fast folding algorithm (FFA) to uncover channel-wide periodic signals in radio dynamic spectra. Running blipss on 4.5 hours of 4-8 GHz data gathered with the Robert C. Byrd Green Bank Telescope, we searched the central 6' of our Galaxy for kHz-wide signals with periods between 11-100 s and duty cycles (δ\delta) between 10-50%. Our searches, to our knowledge, constitute the first FFA exploration for periodic alien technosignatures. We report a non-detection of channel-wide periodic signals in our data. Thus, we constrain the abundance of 4-8 GHz extraterrestrial transmitters of kHz-wide periodic pulsed signals to fewer than one in about 600,000 stars at the GC above a 7σ\sigma equivalent isotropic radiated power of ≈2×1018\approx 2 \times 10^{18} W at δ≃10%\delta \simeq 10\%. From an astrophysics standpoint, blipss, with its utilization of a per-channel FFA, can enable the discovery of signals with exotic radio frequency sweeps departing from the standard cold plasma dispersion law.Comment: 20 pages, 11 figures, published in AJ, in press (http://seti.berkeley.edu/blipss/
    corecore