10 research outputs found

    Novel cytokine and chemokine markers of hidradenitis suppurativa reflect chronic inflammation and itch

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148237/1/all13665-sup-0001-SupInfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148237/2/all13665_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148237/3/all13665.pd

    Antibodies Against Human BLyS and APRIL Attenuate EAE Development in Marmoset Monkeys

    Get PDF
    B lymphocyte stimulator (BLyS, also indicated as BAFF (B-cell activating factor) and CD257), and A Proliferation Inducing Ligand (APRIL, CD256) are two members of the TNF superfamily with a central role in B cell survival. Antibodies against these factors have potential therapeutic relevance in autoimmune inflammatory disorders with a proven pathogenic contribution of B cells, such as multiple sclerosis (MS). In the current study we performed a multi-parameter efficacy comparison of monoclonal antibodies against human anti-BLyS and anti-APRIL in a common marmoset (Callithrix jacchus) model of experimental autoimmune encephalomyelitis (EAE). A MS-like disease was induced by immunization with recombinant human myelin/oligodendrocyte glycoprotein (rhMOG) in complete Freund's adjuvant. The results show that the anti-BLyS and anti-APRIL antibody cause significant depletion of circulating CD20+ B cells, but a small subset of CD20 + CD40highB cells was not depleted. Induction of CD20+ B cell depletion from lymph nodes was only observed in the anti-BLyS treated monkeys. Both antibodies had a significant inhibitory effect on disease development, but all monkeys developed clinically evident EAE. Anti-BLyS treated monkeys were sacrificed with the same clinical signs as saline-treated monkeys, but nevertheless displayed significantly reduced spinal cord demyelination. This effect was not observed in the anti-APRIL treated monkeys. The two antibodies had a different effect on T cell subset activation and the profiles of ex vivo released cytokines. In conclusion, treatment with anti-BLyS and anti-APRIL delays the development of neurological disease in a relevant preclinical model of MS. The two mAbs achieve this effect via different mechanisms

    Serum Erythroferrone Levels Associate with Mortality and Cardiovascular Events in Hemodialysis and in CKD Patients: A Two Cohorts Study

    No full text
    Erythroferrone (ERFE) is a hepcidin inhibitor whose synthesis is stimulated by erythropoietin, which increases iron absorption and mobilization. We studied the association between serum ERFE and mortality and non-fatal cardiovascular (CV) events in a cohort of 1123 hemodialysis patients and in a cohort of 745 stage 1–5 chronic kidney disease (CKD) patients. Erythroferrone was measured by a validated enzyme-linked immunosorbent assay (ELISA). In the hemodialysis cohort, serum ERFE associated directly with erythropoiesis stimulating agents (ESA) dose (p < 0.001) and inversely with serum iron and ferritin (p < 0.001). Erythroferrone associated with the combined outcome in an analysis adjusting for traditional risk factors, factors peculiar to end-stage kidney disease, serum ferritin, inflammation, and nutritional status (HR, hazard ratio, (5 ng/mL increase: 1.04, 95% confidence interval, CI: 1.01–1.08, p = 0.005). Furthermore, treatment with ESA modified the relationship between ERFE and the combined end-point in adjusted analyses (p for the effect modification = 0.018). Similarly, in CKD patients there was a linear increase in the risk for the same outcome in adjusted analyses (HR (2 ng/mL increase): 1.04, 95% CI: 1.0–1.07, p = 0.015). Serum ERFE is associated with mortality and CV events in CKD and in HD patients, and treatment by ESA amplifies the risk for this combined end-point in HD patients

    Race, Interleukin-6, Genotype, and Cardiovascular Disease in Patients With Chronic Kidney Disease

    No full text
    Background Differences in death rate and cardiovascular disease (CVD) between Black and White patients with chronic kidney disease is attributed to sociocultural factors, comorbidities, genetics, and inflammation. Methods and Results We examined the interaction of race, plasma IL-6 (interleukin-6), and genotype as determinants of CVD and mortality in 3031 Chronic Renal Insufficiency Cohort study participants. The primary outcomes were all-cause mortality and a composite of incident myocardial infarction, peripheral artery disease, stroke, and heart failure. During the median follow-up of 10 years, Black patients with chronic kidney disease experienced a significantly higher mortality (34% versus 26%) and CVD composite (41% versus 28%) compared with White patients. After adjustment, genotype did not associate with the outcomes. The adjusted hazard ratio for mortality (4.11 [2.48-6.80], \u3c0.001) and CVD composite (2.52 [1.96-3.24], \u3c0.001) were higher for the highest versus lowest IL-6 quintile. The adjusted hazards for death per 1-quintile increase in IL-6 in White and Black individuals were 1.53 (1.42-1.64) versus 1.29 (1.20-1.38) (\u3c0.001), respectively. For CVD composite they were 1.61 (1.50-1.74) versus 1.30 (1.22-1.39) (\u3c0.001), respectively. In Cox proportional hazard models that included IL-6, there was no longer a racial disparity for death (1.01 [0.87-1.16], =0.92), but significant unexplained mediation remained for CVD (1.24 [1.07-1.43]; =0.004). Path models that included IL-6, diabetes, and urine albumin to creatinine ratio were able to identify variables responsible for racial disparity in mortality and CVD. Conclusions Racial differences in mortality and CVD among patients with chronic kidney disease could be explained by good-fitting path models that include selected mediator variables including diabetes and plasma IL-6

    Race, Interleukin‐6, TMPRSS6 Genotype, and Cardiovascular Disease in Patients With Chronic Kidney Disease

    No full text
    Background Differences in death rate and cardiovascular disease (CVD) between Black and White patients with chronic kidney disease is attributed to sociocultural factors, comorbidities, genetics, and inflammation. Methods and Results We examined the interaction of race, plasma IL‐6 (interleukin‐6), and TMPRSS6 genotype as determinants of CVD and mortality in 3031 Chronic Renal Insufficiency Cohort study participants. The primary outcomes were all‐cause mortality and a composite of incident myocardial infarction, peripheral artery disease, stroke, and heart failure. During the median follow‐up of 10 years, Black patients with chronic kidney disease experienced a significantly higher mortality (34% versus 26%) and CVD composite (41% versus 28%) compared with White patients. After adjustment, TMPRSS6 genotype did not associate with the outcomes. The adjusted hazard ratio for mortality (4.11 [2.48–6.80], P<0.001) and CVD composite (2.52 [1.96–3.24], P<0.001) were higher for the highest versus lowest IL‐6 quintile. The adjusted hazards for death per 1‐quintile increase in IL‐6 in White and Black individuals were 1.53 (1.42–1.64) versus 1.29 (1.20–1.38) (P<0.001), respectively. For CVD composite they were 1.61 (1.50–1.74) versus 1.30 (1.22–1.39) (P<0.001), respectively. In Cox proportional hazard models that included IL‐6, there was no longer a racial disparity for death (1.01 [0.87–1.16], P=0.92), but significant unexplained mediation remained for CVD (1.24 [1.07–1.43]; P=0.004). Path models that included IL‐6, diabetes, and urine albumin to creatinine ratio were able to identify variables responsible for racial disparity in mortality and CVD. Conclusions Racial differences in mortality and CVD among patients with chronic kidney disease could be explained by good‐fitting path models that include selected mediator variables including diabetes and plasma IL‐6

    Antibodies Against Human BLyS and APRIL Attenuate EAE Development in Marmoset Monkeys (vol 7, pg 557, 2012)

    Get PDF
    B lymphocyte stimulator (BLyS, also indicated as BAFF (B-cell activating factor) and CD257), and A Proliferation Inducing Ligand (APRIL, CD256) are two members of the TNF superfamily with a central role in B cell survival. Antibodies against these factors have potential therapeutic relevance in autoimmune inflammatory disorders with a proven pathogenic contribution of B cells, such as multiple sclerosis (MS). In the current study we performed a multi-parameter efficacy comparison of monoclonal antibodies against human anti-BLyS and anti-APRIL in a common marmoset (Callithrix jacchus) model of experimental autoimmune encephalomyelitis (EAE). A MS-like disease was induced by immunization with recombinant human myelin/oligodendrocyte glycoprotein (rhMOG) in complete Freund's adjuvant. The results show that the anti-BLyS and anti-APRIL antibody cause significant depletion of circulating CD20+ B cells, but a small subset of CD20 + CD40highB cells was not depleted. Induction of CD20+ B cell depletion from lymph nodes was only observed in the anti-BLyS treated monkeys. Both antibodies had a significant inhibitory effect on disease development, but all monkeys developed clinically evident EAE. Anti-BLyS treated monkeys were sacrificed with the same clinical signs as saline-treated monkeys, but nevertheless displayed significantly reduced spinal cord demyelination. This effect was not observed in the anti-APRIL treated monkeys. The two antibodies had a different effect on T cell subset activation and the profiles of ex vivo released cytokines. In conclusion, treatment with anti-BLyS and anti-APRIL delays the development of neurological disease in a relevant preclinical model of MS. The two mAbs achieve this effect via different mechanisms
    corecore