15 research outputs found

    DDIS-28. A HIGH THROUGHPUT SCREENING PLATFORM TO IDENTIFY RADIOSENSITIZERS FOR DIPG

    Full text link
    Abstract Diffuse intrinsic pontine glioma (DIPG) is an incurable brainstem tumor and the leading cause of death in children with brain cancer. Despite numerous clinical trials, no drugs have been found to prolong survival for DIPG patients, suggesting an urgent need to test therapeutics in preclinical models more predictive of clinical activity. To address this gap, we developed a genetically engineered mouse model incorporating the Histone H3.3 K27M mutation, p53 deletion, and PDGFR-α amplification, which co-occur in up to 40% of human DIPG. Here we report the results of a drug screen to identify radiosensitizers of DIPG cells isolated from our mouse model and cultured ex vivo as neurospheres. Although previous clinical trials combining radiotherapy with radiosensitizing agents failed to benefit DIPG patients, they incorporated general radiosensitizers. We hypothesize that searching for radiosynergy using 3-dimensional neurospheres derived from genetically defined primary cell DIPG models will enhance our ability to prioritize clinically relevant radiosensitizers. To identify candidates, we developed high throughput radiation and imaging protocols to quantify the number, size, and viability of neurospheres following treatment. We screened 1,280 FDA-approved drugs and 1,600 molecules with a history of clinical use. Two mechanistic classes of compounds were identified that sensitized DIPG neurospheres to radiotherapy, both targeting epigenetic factors. An HDAC1/3 inhibitor along with several different BET bromodomain inhibitors increased cell death 2–3 fold beyond the effect of radiation with minimal activity from the compounds alone. In addition to optimizing the dosing and timing of these compounds for animal studies, we are investigating whether radiosensitization occurs in H3.3 wildtype neurospheres. In the current molecular era of cancer, genetic features like the H3.3 K27M mutation could present an opportunity to develop therapeutics that preferentially radiosensitize diseased cells relative to normal cells. Such “precision radiosensitizers” would advance radiotherapy by enhancing tumor-specific toxicity while sparing bystander cells.</jats:p

    DDIS-27. TARGETING ATP DOCKING AND P35/P25 BINDING OF CDK5 IN GLIOMA STEM CELLS USING SYNTHETIC INHIBITORS

    Full text link
    Abstract The survival advantage of glioma stem cells (GSCs) represents a critical mechanism for growth, therapy resistance and recurrence in glioblastoma. So far, targeting GSCs has not been highly specific, since these cells co-opt the normal developmental signaling pathways. We have demonstrated that the activated CDK5-CREB1 signaling axis regulates GSC self-renewal and also promotes radiation-resistance. Thus targeting CDK5 signaling is highly rational, yet there are challenges. Most of the available CDK5 inhibitors also target other CDKs non-specifically. In collaboration with The Center for Molecular Evolution and Drug Discovery, we are developing novel CDK5 inhibitors that are highly potent and specific. METHODOLOGY: The CKD5-p25 crystal structure (pdb code 1UNL) was used to conduct a virtual high throughput screen (vHTS). A library of 10 million commercially available compounds which had been filtered to ensure they possessed good drug-like properties was screened against the crystal structure. The top 33 compounds based on their predicted target binding, synthetic feasibility and availability were tested in an in vitro kinase assay to measure CDK5 inhibition. RESULTS: Of the 33 potential hit, 11 compounds showed a CDK5 inhibition of &lt; 50 µM. These 11 hits represent 4 distinct chemical scaffolds. Two of them have IC50 &lt; 1 µM, with one compound having an IC50 &lt; 0.4 µM. The vHTS and subsequent in vitro testing have therefore confirmed the identification of several new series of potent CDK5 hit compounds. We are now characterizing the kinase selectivity of our different hit series and evaluating their activity in cell-based assays. This will help focus efforts on the most promising 1–2 scaffolds for further medicinal chemistry optimization to improve the compounds’ potency, selectivity and brain penetration. Ultimately, our optimized compounds will be tested in GBM models to demonstrate their effectiveness in inhibiting CDK5 as a new approach for treating GBM.</jats:p

    Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption

    No full text
    Mitochondria are biosynthetic, bioenergetic, and signaling organelles with a critical role in cellular physiology. Dysfunctional mitochondria are associated with aging and underlie the cause of a wide range of diseases, from neurodegeneration to cancer. Through signaling, mitochondria regulate diverse biological outcomes. The maintenance of the mitochondrial membrane potential, for instance, is essential for proliferation, the release of mitochondrial reactive oxygen species, and oxygen sensing. The loss of mitochondrial membrane potential triggers pathways to clear damaged mitochondria and often results in cell death. In this study, we conducted a genome-wide positive selection CRISPR screen using a combination of mitochondrial inhibitors to uncover genes involved in sustaining a mitochondrial membrane potential, and therefore avoid cell death when the electron transport chain is impaired. Our screen identified genes involved in mitochondrial protein translation and ATP synthesis as essential for the induction of cell death when cells lose their mitochondrial membrane potential. This report intends to provide potential targets for the treatment of diseases associated with mitochondrial dysfunction.</jats:p

    Table1_Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption.XLSX

    No full text
    Mitochondria are biosynthetic, bioenergetic, and signaling organelles with a critical role in cellular physiology. Dysfunctional mitochondria are associated with aging and underlie the cause of a wide range of diseases, from neurodegeneration to cancer. Through signaling, mitochondria regulate diverse biological outcomes. The maintenance of the mitochondrial membrane potential, for instance, is essential for proliferation, the release of mitochondrial reactive oxygen species, and oxygen sensing. The loss of mitochondrial membrane potential triggers pathways to clear damaged mitochondria and often results in cell death. In this study, we conducted a genome-wide positive selection CRISPR screen using a combination of mitochondrial inhibitors to uncover genes involved in sustaining a mitochondrial membrane potential, and therefore avoid cell death when the electron transport chain is impaired. Our screen identified genes involved in mitochondrial protein translation and ATP synthesis as essential for the induction of cell death when cells lose their mitochondrial membrane potential. This report intends to provide potential targets for the treatment of diseases associated with mitochondrial dysfunction.</p

    Table2_Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption.XLSX

    No full text
    Mitochondria are biosynthetic, bioenergetic, and signaling organelles with a critical role in cellular physiology. Dysfunctional mitochondria are associated with aging and underlie the cause of a wide range of diseases, from neurodegeneration to cancer. Through signaling, mitochondria regulate diverse biological outcomes. The maintenance of the mitochondrial membrane potential, for instance, is essential for proliferation, the release of mitochondrial reactive oxygen species, and oxygen sensing. The loss of mitochondrial membrane potential triggers pathways to clear damaged mitochondria and often results in cell death. In this study, we conducted a genome-wide positive selection CRISPR screen using a combination of mitochondrial inhibitors to uncover genes involved in sustaining a mitochondrial membrane potential, and therefore avoid cell death when the electron transport chain is impaired. Our screen identified genes involved in mitochondrial protein translation and ATP synthesis as essential for the induction of cell death when cells lose their mitochondrial membrane potential. This report intends to provide potential targets for the treatment of diseases associated with mitochondrial dysfunction.</p

    Table3_Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption.XLSX

    No full text
    Mitochondria are biosynthetic, bioenergetic, and signaling organelles with a critical role in cellular physiology. Dysfunctional mitochondria are associated with aging and underlie the cause of a wide range of diseases, from neurodegeneration to cancer. Through signaling, mitochondria regulate diverse biological outcomes. The maintenance of the mitochondrial membrane potential, for instance, is essential for proliferation, the release of mitochondrial reactive oxygen species, and oxygen sensing. The loss of mitochondrial membrane potential triggers pathways to clear damaged mitochondria and often results in cell death. In this study, we conducted a genome-wide positive selection CRISPR screen using a combination of mitochondrial inhibitors to uncover genes involved in sustaining a mitochondrial membrane potential, and therefore avoid cell death when the electron transport chain is impaired. Our screen identified genes involved in mitochondrial protein translation and ATP synthesis as essential for the induction of cell death when cells lose their mitochondrial membrane potential. This report intends to provide potential targets for the treatment of diseases associated with mitochondrial dysfunction.</p
    corecore