1,727 research outputs found
Spontaneous spin-polarized current in a nonuniform Rashba interaction system
We investigate the electron transport through a two-dimensional semiconductor
with a nonuniform Rashba spin-orbit interaction. Due to the combination of the
coherence effect and the Rashba interaction, a spontaneous spin-polarized
current emerges in the absence of any magnetic material and magnetic field. For
a two-terminal device, only the local current contains polarization; however,
with a four-terminal setup, a polarized total current is produced. This
phenomenon may offer a novel way for generating a spin-polarized current,
replacing the traditional spin-injection method.Comment: 4 pages, 4 figure
Viscous diffusion and photoevaporation of stellar disks
The evolution of a stellar disk under the influence of viscous evolution,
photoevaporation from the central source, and photoevaporation by external
stars is studied. We take the typical parameters of TTSs and the Trapezium
Cluster conditions. The photoionizing flux from the central source is assumed
to arise both from the quiescent star and accretion shocks at the base of
stellar magnetospheric columns, along which material from the disk accretes.
The accretion flux is calculated self-consistently from the accretion mass loss
rate. We find that the disk cannot be entirely removed using only viscous
evolution and photoionization from the disk-star accretion shock. However, when
FUV photoevaporation by external massive stars is included the disk is removed
in 10^6 -10^7yr; and when EUV photoevaporation by external massive stars is
included the disk is removed in 10^5 - 10^6yr.
An intriguing feature of photoevaporation by the central star is the
formation of a gap in the disk at late stages of the disk evolution. As the gap
starts forming, viscous spreading and photoevaporation work in resonance.
There is no gap formation for disks nearby external massive stars because the
outer annuli are quickly removed by the dominant EUV flux. On the other hand,
at larger, more typical distances (d>>0.03pc) from the external stars the flux
is FUV dominated. As a consequence, the disk is efficiently evaporated at two
different locations; forming a gap during the last stages of the disk
evolution.Comment: 27 pages, 11 figures, accepted for publication in Ap
A Highly Antibacterial Achievement of Hollow Fiber Polyethersulfone (PES) Membrane Loaded with Silver Nanoparticles
A highly antibacterial of hollow fiber polyethersulfone (PES) membrane was prepared by loading silver nanoparticles within the PES graft acrylamide (AAm)-membrane. The grafted layers of AAm were provided the matrix for silver nanoparticles (AgNPs) entrapment. The characterization of the prepared hollowfiber (HF) PES membrane loaded with silver nanoparticles were examined by using transmission electron microscopy (TEM). To examine the antibacterial property of the prepared AgNPs-AAm-PES membrane, the halo zone and the shaking flask test were carried out. In these tests, both of unmodified PES membrane and AgNPs-AAm-PES membrane were exposed to pure culture suspension of Escherichia coli (E. Coli) bacteria with the concentration of 107 CFU/ml. The viable bacteria formed within the membrane surfaces and themembrane circumferences were observed by the halo zone formation, while the percentage of bacteria killing ratio was determined by shaking flask test method. The TEM results showed that the silver nanoparticles were formed within grafted layers of AAm-PES membrane and the size of silver nanoparticleswere about 10 nm. The AgNPs-AAm-PES membrane were highly effective to prevent the membrane biofouling as shown by the clearly halo zone formation compared with the unmodified PES membrane. The shake flask test were also revealed that almost 99.9 percent of the E. coli bacteria were killed when theyhaving exposed to the AgNPs-AAm-PES membrane. This was due to the silver ions are allowed to release from its membrane surfac
Halting planet migration by photoevaporation from the central source
The recent discovery of Jupiter-mass planets orbiting at a few AU from their
stars compliments earlier detections of massive planets on very small orbits.
The short period orbits strongly suggest that planet migration has occurred,
with the likely mechanism being tidal interactions between the planets and the
gas disks out of which they formed. The newly discovered long period planets,
together with the gas giant planets in our solar system, show that migration is
either absent or rapidly halted in at least some systems. We propose a
mechanism for halting type-II migration at several AU in a gas disk.
Photoevaporation of the disk by irradiation from the central star can produce a
gap in the disk at a few AU, preventing planets outside the gap from migrating
down to the star. This would result in an excess of systems with planets at or
just outside the photoevaporation radius.Comment: 12 pages, 3 figures, accepted for publication by ApJ Letter
Quantum transport theory for nanostructures with Rashba spin-orbital interaction
We report on a general theory for analyzing quantum transport through devices
in the Metal-QD-Metal configuration where QD is a quantum dot or the device
scattering region which contains Rashba spin-orbital and electron-electron
interactions. The metal leads may or may not be ferromagnetic, they are assumed
to weakly couple to the QD region. Our theory is formulated by second
quantizing the Rashba spin-orbital interaction in spectral space (instead of
real space), and quantum transport is then analyzed within the Keldysh
nonequilibrium Green's function formalism. The Rashba interaction causes two
main effects to the Hamiltonian: (i) it gives rise to an extra spin-dependent
phase factor in the coupling matrix elements between the leads and the QD; (ii)
it gives rise to an inter-level spin-flip term but forbids any intra-level
spin-flips. Our formalism provides a starting point for analyzing many quantum
transport issues where spin-orbital effects are important. As an example, we
investigate transport properties of a Aharnov-Bohm ring in which a QD having
Rashba spin-orbital and e-e interactions is located in one arm of the ring. A
substantial spin-polarized conductance or current emerges in this device due to
a combined effect of a magnetic flux and the Rashba interaction. The direction
and strength of the spin-polarization are shown to be controllable by both the
magnetic flux and a gate voltage.Comment: 12 pages, 8 figure
Coherent current transport in wide ballistic Josephson junctions
We present an experimental and theoretical investigation of coherent current
transport in wide ballistic superconductor-two dimensional electron
gas-superconductor junctions. It is found experimentally that upon increasing
the junction length, the subharmonic gap structure in the current-voltage
characteristics is shifted to lower voltages, and the excess current at
voltages much larger than the superconducting gap decreases. Applying a theory
of coherent multiple Andreev reflection, we show that these observations can be
explained in terms of transport through Andreev resonances.Comment: 4 pages, 4 figure
Time-dependent rotational stability of dynamic planets with elastic lithospheres
True polar wander (TPW), a reorientation of the rotation axis relative to the solid body, is driven by mass redistribution on the surface or within the planet and is stabilized by two aspects of the planet's viscoelastic response: the delayed viscous readjustment of the rotational bulge and the elastic stresses in the lithosphere. The latter, following Willemann (1984), is known as remnant bulge stabilization. In the absence of a remnant bulge, the rotation of a terrestrial planet is said to be inherently unstable. Theoretical treatments have been developed to treat the final (equilibrium) state in this case and the time-dependent TPW toward this state, including nonlinear approaches that assume slow changes in the inertia tensor. Moreover, remnant bulge stabilization has been incorporated into both equilibrium and linearized, time-dependent treatments of rotational stability. We extend the work of Ricard et al. (1993) to derive a nonlinear, time-dependent theory of TPW that incorporates stabilization by both the remnant bulge and viscous readjustment of the rotational bulge. We illustrate the theory using idealized surface loading scenarios applied to models of both Earth and Mars. We demonstrate that the inclusion of remnant bulge stabilization reduces both the amplitude and timescale of TPW relative to calculations in which this stabilization is omitted. Furthermore, given current estimates of mantle viscosity for both planets, our calculations indicate that departures from the equilibrium orientation of the rotation axis in response to forcings with timescale of 1 Myr or greater are significant for Earth but negligible for Mars
Brain2Music: Reconstructing Music from Human Brain Activity
The process of reconstructing experiences from human brain activity offers a
unique lens into how the brain interprets and represents the world. In this
paper, we introduce a method for reconstructing music from brain activity,
captured using functional magnetic resonance imaging (fMRI). Our approach uses
either music retrieval or the MusicLM music generation model conditioned on
embeddings derived from fMRI data. The generated music resembles the musical
stimuli that human subjects experienced, with respect to semantic properties
like genre, instrumentation, and mood. We investigate the relationship between
different components of MusicLM and brain activity through a voxel-wise
encoding modeling analysis. Furthermore, we discuss which brain regions
represent information derived from purely textual descriptions of music
stimuli. We provide supplementary material including examples of the
reconstructed music at https://google-research.github.io/seanet/brain2musicComment: Preprint; 21 pages; supplementary material:
https://google-research.github.io/seanet/brain2musi
- …