4,320 research outputs found

    Momentum space metric, non-local operator, and topological insulators

    Full text link
    Momentum space of a gapped quantum system is a metric space: it admits a notion of distance reflecting properties of its quantum ground state. By using this quantum metric, we investigate geometric properties of momentum space. In particular, we introduce a non-local operator which represents distance square in real space and show that this corresponds to the Laplacian in curved momentum space, and also derive its path integral representation in momentum space. The quantum metric itself measures the second cumulant of the position operator in real space, much like the Berry gauge potential measures the first cumulant or the electric polarization in real space. By using the non-local operator and the metric, we study some aspects of topological phases such as topological invariants, the cumulants and topological phase transitions. The effect of interactions to the momentum space geometry is also discussed.Comment: 13 pages, 4 figure

    VLT observations of the asymmetric Etched Hourglass Nebula, MyCn 18

    Get PDF
    Context. The mechanisms that form extreme bipolar planetary nebulae remain unclear. Aims. The physical properties, structure, and dynamics of the bipolar planetary nebula, MyCn 18, are investigated in detail with the aim of understanding the shaping mechanism and evolutionary history of this object. Methods. VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical Echelle spectra are used to investigate MyCn 18. Morpho-kinematic modelling was used to firmly constrain the structure and kinematics of the source. A timescale analysis was used to determine the kinematical age of the nebula and its main components. Results. A spectroscopic study of MyCn 18's central and offset region reveals the detailed make-up of its nebular composition. Molecular hydrogen, atomic helium, and Bracket gamma emission are detected from the central regions of MyCn 18. ISAAC spectra from a slit position along the narrow waist of the nebula demonstrate that the ionised gas resides closer to the centre of the nebula than the molecular emission. A kinematical age of the nebula and its components were obtained by the P-V arrays and timescale analysis. Conclusions. The structure and kinematics of MyCn 18 are better understood using an interactive 3-D modelling tool called shape. A dimensional and timescale analysis of MyCn 18's major components provides a possible mechanism for the nebula's asymmetry. The putative central star is somewhat offset from the geometric centre of the nebula, which is thought to be the result of a binary system. We speculate that the engulfing and destruction of an exoplanet during the AGB phase may have been a key event in shaping MyCn 18 and generating of its hypersonic knotty outflow.Comment: 15 pages, 3 tables, 13 figures. Accepted for publication by A&

    Anisotropic magnetic diffuse scattering in an easy-plane type antiferromagnet ErNi2_{2}Ge2_{2}

    Full text link
    We report on neutron scattering studies of a rare earth intermetallic compound ErNi2_{2}Ge2_{2}. Polarized neutron scattering experiments revealed that the magnetic ordered moment m{\bm m} lies in ab-plane. Taking account of a lack of the third higher harmonic reflection, ErNi2_{2}Ge2_{2} is considered to have a helical magnetic structure. The magnetic scattering profiles along the [100][100]^{\ast}- and the [110][110]^{\ast}-directions are well described by the sum of Gaussian and modified-Lorentzian terms, even far below TNT_{\scriptsize N}, indicating that short-range orders coexist with a long-range order. Interestingly, the modified-Lorentzian-type diffuse scattering is not present in the profiles along the [001][001]^{\ast}-direction. The anisotropy of the diffuse scattering suggests that the short-range-order consists of one dimensional long-range helices along the c-axis.Comment: 4 pages, to be published in J. Phys.: Condens. Matter (HFM2008

    Engineering the Cost Function of a Variational Quantum Algorithm for Implementation on Near-Term Devices

    Full text link
    Variational hybrid quantum-classical algorithms are some of the most promising workloads for near-term quantum computers without error correction. The aim of these variational algorithms is to guide the quantum system to a target state that minimizes a cost function, by varying certain parameters in a quantum circuit. This paper proposes a new approach for engineering cost functions to improve the performance of a certain class of these variational algorithms on today's small qubit systems. We apply this approach to a variational algorithm that generates thermofield double states of the transverse field Ising model, which are relevant when studying phase transitions in condensed matter systems. We discuss the benefits and drawbacks of various cost functions, apply our new engineering approach, and show that it yields good agreement across the full temperature range.Comment: 8 pages, 4 figure

    Semi-superfluid strings in High Density QCD

    Full text link
    We show that topological superfluid strings/vortices with flux tubes exist in the color-flavor locked (CFL) phase of color superconductors. Using a Ginzburg-Landau free energy we find the configurations of these strings. These strings can form during the transition from the normal phase to the CFL phase at the core of very dense stars. We discuss an interesting scenario for a network of strings and its evolution at the core of dense stars.Comment: minor changes in the tex

    Modeling and Analyzing Academic Researcher Behavior

    Full text link
    . This paper suggests a theoretical framework for analyzing the mechanism of the behavior of academic researchers whose interests are tangled and vary widely in academic factors (the intrinsic satisfaction in conducting research, the improvement in individual research ability, etc.) or non-academic factors (career rewards, financial rewards, etc.). Furthermore, each researcher also has his/her different academic stances in their preferences about academic freedom and academic entrepreneurship. Understanding the behavior of academic researchers will contribute to nurture young researchers, to improve the standard of research and education as well as to boost collaboration in academia-industry. In particular, as open innovation is increasingly in need of the involvement of university researchers, to establish a successful approach to entice researchers into enterprises' research, companies must comprehend the behavior of university researchers who have multiple complex motivations. The paper explores academic researchers' behaviors through optimizing their utility functions, i.e. the satisfaction obtained by their research outputs. This paper characterizes these outputs as the results of researchers' 3C: Competence (the ability to implement the research), Commitment (the effort to do the research), and Contribution (finding meaning in the research). Most of the previous research utilized the empirical methods to study researcher's motivation. Without adopting economic theory into the analysis, the past literature could not offer a deeper understanding of researcher's behavior. Our contribution is important both conceptually and practically because it provides the first theoretical framework to study the mechanism of researcher's behavior

    Flows along cometary tails in the Helix planetary nebula NGC 7293

    Full text link
    Previous velocity images which reveal flows of ionized gas along the most prominent cometary tail (from Knot 38) in the Helix planetary nebula are compared with that taken at optical wavelengths with the Hubble Space Telescope and with an image in the emission from molecular hydrogen. The flows from the second most prominent tail from Knot 14 are also considered. The kinematics of the tail from the more complex Knot 32, shown here for the first time, also reveals an acceleration away from the central star. All of the tails are explained as accelerating ionized flows of ablated material driven by the previous, mildly supersonic, AGB wind from the central star. The longest tail of ionized gas, even though formed by this mechanism in a very clumpy medium, as revealed by the emission from molecular hydrogen, appears to be a coherent outflowing feature.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Development of the analog ASIC for multi-channel readout X-ray CCD camera

    Full text link
    We report on the performance of an analog application-specific integrated circuit (ASIC) developed aiming for the front-end electronics of the X-ray CCDcamera system onboard the next X-ray astronomical satellite, ASTRO-H. It has four identical channels that simultaneously process the CCD signals. Distinctive capability of analog-to-digital conversion enables us to construct a CCD camera body that outputs only digital signals. As the result of the front-end electronics test, it works properly with low input noise of =<30 uV at the pixel rate below 100 kHz. The power consumption is sufficiently low of about 150 mW/chip. The input signal range of 720 mV covers the effective energy range of the typical X-ray photon counting CCD (up to 20 keV). The integrated non-linearity is 0.2% that is similar as those of the conventional CCDs in orbit. We also performed a radiation tolerance test against the total ionizing dose (TID) effect and the single event effect. The irradiation test using 60Co and proton beam showed that the ASIC has the sufficient tolerance against TID up to 200 krad, which absolutely exceeds the expected amount of dose during the period of operating in a low-inclination low-earth orbit. The irradiation of Fe ions with the fluence of 5.2x10^8 Ion/cm2 resulted in no single event latchup (SEL), although there were some possible single event upsets. The threshold against SEL is higher than 1.68 MeV cm^2/mg, which is sufficiently high enough that the SEL event should not be one of major causes of instrument downtime in orbit.Comment: 16 pages, 6 figure

    Designing high-fidelity multi-qubit gates for semiconductor quantum dots through deep reinforcement learning

    Full text link
    In this paper, we present a machine learning framework to design high-fidelity multi-qubit gates for quantum processors based on quantum dots in silicon, with qubits encoded in the spin of single electrons. In this hardware architecture, the control landscape is vast and complex, so we use the deep reinforcement learning method to design optimal control pulses to achieve high fidelity multi-qubit gates. In our learning model, a simulator models the physical system of quantum dots and performs the time evolution of the system, and a deep neural network serves as the function approximator to learn the control policy. We evolve the Hamiltonian in the full state-space of the system, and enforce realistic constraints to ensure experimental feasibility
    corecore