241 research outputs found

    The Recent Overview and Prospects of Nuclear Power Policy and Industrial Strategies in the UK, Italy and Sweden

    Get PDF
    European countries that had moved away from nuclear energy or frozen the construction of new nuclear power plants have begun to return to the construction due to their pursuit of low-carbon electricity sources, energy security and requirements for replacements for existing nuclear plants. Particularly, we should pay attention to developments in the UK that vowed to launch the construction of new nuclear power plants in its 2007 Energy White Paper, and in Italy and Sweden that have begun to reconsider their legal ban on new nuclear plants. These countries launched nuclear power generation development comparatively in the early stage in the world, and built solid nuclear industry infrastructure, however after that, suspended the construction of new nuclear power plants for energy-related or economic reasons. In view of recent conditions, however, they are trying to reintroduce nuclear energy or expand nuclear energy use. Given these points, the three countries are viewed as symbols of Europes return to nuclear energy.nuclear energy, nuclear power, regulation, energy security, carbon emissions

    Preface

    Get PDF

    Will and Third Party : On the Occasion of the Reforms of Inheritance Law

    Get PDF

    Htr2a-Expressing Cells in the Central Amygdala Control the Hierarchy between Innate and Learned Fear

    Get PDF
    SummaryFear is induced by innate and learned mechanisms involving separate pathways. Here, we used an olfactory-mediated innate-fear versus learned-fear paradigm to investigate how these pathways are integrated. Notably, prior presentation of innate-fear stimuli inhibited learned-freezing response, but not vice versa. Whole-brain mapping and pharmacological screening indicated that serotonin-2A receptor (Htr2a)-expressing cells in the central amygdala (CeA) control both innate and learned freezing, but in opposing directions. In vivo fiber photometry analyses in freely moving mice indicated that innate but not learned-fear stimuli suppressed the activity of Htr2a-expressing CeA cells. Artificial inactivation of these cells upregulated innate-freezing response and downregulated learned-freezing response. Thus, Htr2a-expressing CeA cells serve as a hierarchy generator, prioritizing innate fear over learned fear

    The impact of FORMOSAT-5/AIP observations on the ionospheric space weather

    Full text link
    This paper assimilates the in-situ O+ fluxes observations obtained from the Advanced Ionospheric Probe (AIP) onboard the upcoming FORMOSAT-5 (FS-5) satellite and evaluates its possible impact on the ionospheric space weather forecast model. The Observing System Simulation Experiment (OSSE), designed for the global O+ fluxes, is shown to improve the electron density specification in the vicinity of satellite orbits. The root-mean-square-error (RMSE) of the ionospheric electron density obtained from assimilating the daytime O+ fluxes could be improved by ~10 and ~5% for the forecast and nowcast, respectively. Although the improvement of nighttime O+ flux assimilation is less significant compared to the daytime assimilation, it still reveals impacts on the model result. This suggests that nighttime observations might not be sufficient to alter the model trajectory in the positive direction as with the daytime result. Alternative data assimilation approaches, such as assimilation of the empirical model built by using the nighttime FS-5/AIP together with other existing satellite observations of O+ flux could obtain better accuracy of the electron density forecast

    Categorization of 77 dystrophin exons into 5 groups by a decision tree using indexes of splicing regulatory factors as decision markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy, a fatal muscle-wasting disease, is characterized by dystrophin deficiency caused by mutations in the <it>dystrophin </it>gene. Skipping of a target <it>dystrophin </it>exon during splicing with antisense oligonucleotides is attracting much attention as the most plausible way to express dystrophin in DMD. Antisense oligonucleotides have been designed against splicing regulatory sequences such as splicing enhancer sequences of target exons. Recently, we reported that a chemical kinase inhibitor specifically enhances the skipping of mutated <it>dystrophin </it>exon 31, indicating the existence of exon-specific splicing regulatory systems. However, the basis for such individual regulatory systems is largely unknown. Here, we categorized the <it>dystrophin </it>exons in terms of their splicing regulatory factors.</p> <p>Results</p> <p>Using a computer-based machine learning system, we first constructed a decision tree separating 77 authentic from 14 known cryptic exons using 25 indexes of splicing regulatory factors as decision markers. We evaluated the classification accuracy of a novel cryptic exon (exon 11a) identified in this study. However, the tree mislabeled exon 11a as a true exon. Therefore, we re-constructed the decision tree to separate all 15 cryptic exons. The revised decision tree categorized the 77 authentic exons into five groups. Furthermore, all nine disease-associated novel exons were successfully categorized as exons, validating the decision tree. One group, consisting of 30 exons, was characterized by a high density of exonic splicing enhancer sequences. This suggests that AOs targeting splicing enhancer sequences would efficiently induce skipping of exons belonging to this group.</p> <p>Conclusions</p> <p>The decision tree categorized the 77 authentic exons into five groups. Our classification may help to establish the strategy for exon skipping therapy for Duchenne muscular dystrophy.</p

    Space-Based Sentinels for Measurement of Infrared Cooling in the Thermosphere for Space Weather Nowcasting

    Get PDF
    Infrared radiative cooling by nitric oxide (NO) and carbon dioxide (CO2) modulates the thermospheres density and thermal response to geomagnetic storms. Satellite tracking and collision avoidance planning require accurate density forecasts during these events. Over the past several years, failed density forecasts have been tied to the onset of rapid and significant cooling due to production of NO and its associated radiative cooling via emission of infrared radiation at 5.3 m. These results have been diagnosed, after the fact, through analyses of measurements of infrared cooling made by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument now in orbit over 16 years on the National Aeronautics and Space Administration Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite. Radiative cooling rates for NO and CO2 have been further shown to be directly correlated with composition and exospheric temperature changes during geomagnetic storms. These results strongly suggest that a network of smallsats observing the infrared radiative cooling of the thermosphere could serve as space weather sentinels. These sentinels would observe and provide radiative cooling rate data in real time to generate nowcasts of density and aerodynamic drag on space vehicles. Currently, radiative cooling is not directly considered in operational space weather forecast models. In addition, recent research has shown that different geomagnetic storm types generate substantially different infrared radiative response, and hence, substantially different thermospheric density response. The ability to identify these storms, and to measure and predict the Earths response to them, should enable substantial improvement in thermospheric density forecasts
    corecore