111 research outputs found

    Fate of spin polarization in a relativistic fluid: An entropy-current analysis

    Get PDF
    We derive relativistic hydrodynamic equations with a dynamical spin degree of freedom on the basis of an entropy-current analysis. The first and second laws of local thermodynamics constrain possible structures of the constitutive relations including a spin current and the antisymmetric part of the (canonical) energy-momentum tensor. Solving the obtained hydrodynamic equations within the linear-mode analysis, we find spin-diffusion modes, indicating that spin density is damped out after a characteristic time scale controlled by transport coefficients introduced in the antisymmetric part of the energy-momentum tensor in the entropy-current analysis. This is a consequence of mutual convertibility between spin and orbital angular momentum.Comment: 7 page

    Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

    Get PDF
    Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere maintenance. The DNA-PK complex also functions in both DNA double strand break repair and telomere maintenance. Interaction between WRN and the DNA-PK complex has been reported in DNA double strand break repair, but their possible cooperation at telomeres has not been reported. This study analyzes thein vitro and in vivo interaction at the telomere between WRN and DNA-PKcs, the catalytic subunit of DNA-PK. The results show that DNA-PKcs selectively stimulates WRN helicase but not WRN exonuclease in vitro, affecting that WRN helicase unwinds and promotes the release of the full-length invading strand of a telomere D-loop model substrate. In addition, the length of telomeric G-tails decreases in DNA-PKcs knockdown cells, and this phenotype is reversed by overexpression of WRN helicase. These results suggest that WRN and DNA-PKcs may cooperatively prevent G-tail shortening in vivo

    Heisenberg realization for U_q(sln) on the flag manifold

    Get PDF
    We give the Heisenberg realization for the quantum algebra Uq(sln)U_q(sl_n), which is written by the qq-difference operator on the flag manifold. We construct it from the action of Uq(sln)U_q(sl_n) on the qq-symmetric algebra Aq(Matn)A_q(Mat_n) by the Borel-Weil like approach. Our realization is applicable to the construction of the free field realization for the Uq(sln^)U_q(\widehat{sl_n}) [AOS].Comment: 10 pages, YITP/K-1016, plain TEX (some mistakes corrected and a reference added

    Development of pericardial fat count images using a combination of three different deep-learning models

    Full text link
    Rationale and Objectives: Pericardial fat (PF), the thoracic visceral fat surrounding the heart, promotes the development of coronary artery disease by inducing inflammation of the coronary arteries. For evaluating PF, this study aimed to generate pericardial fat count images (PFCIs) from chest radiographs (CXRs) using a dedicated deep-learning model. Materials and Methods: The data of 269 consecutive patients who underwent coronary computed tomography (CT) were reviewed. Patients with metal implants, pleural effusion, history of thoracic surgery, or that of malignancy were excluded. Thus, the data of 191 patients were used. PFCIs were generated from the projection of three-dimensional CT images, where fat accumulation was represented by a high pixel value. Three different deep-learning models, including CycleGAN, were combined in the proposed method to generate PFCIs from CXRs. A single CycleGAN-based model was used to generate PFCIs from CXRs for comparison with the proposed method. To evaluate the image quality of the generated PFCIs, structural similarity index measure (SSIM), mean squared error (MSE), and mean absolute error (MAE) of (i) the PFCI generated using the proposed method and (ii) the PFCI generated using the single model were compared. Results: The mean SSIM, MSE, and MAE were as follows: 0.856, 0.0128, and 0.0357, respectively, for the proposed model; and 0.762, 0.0198, and 0.0504, respectively, for the single CycleGAN-based model. Conclusion: PFCIs generated from CXRs with the proposed model showed better performance than those with the single model. PFCI evaluation without CT may be possible with the proposed method

    Excited States of Calogero-Sutherland Model and Singular Vectors of the WNW_N Algebra

    Get PDF
    Using the collective field method, we find a relation between the Jack symmetric polynomials, which describe the excited states of the Calogero-Sutherland model, and the singular vectors of the WNW_N algebra. Based on this relation, we obtain their integral representations. We also give a direct algebraic method which leads to the same result, and integral representations of the skew-Jack polynomials.Comment: LaTeX, 29 pages, 2 figures, New sections for skew-Jack polynomial and example of singular vectors adde
    corecore