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We derive relativistic hydrodynamic equations with a dynamical spin degree of freedom on the basis 
of an entropy-current analysis. The first and second laws of local thermodynamics constrain possible 
structures of the constitutive relations including a spin current and the antisymmetric part of the 
(canonical) energy-momentum tensor. Solving the obtained hydrodynamic equations within the linear-
mode analysis, we find spin-diffusion modes, indicating that spin density is damped out after a 
characteristic time scale controlled by transport coefficients introduced in the antisymmetric part of the 
energy-momentum tensor in the entropy-current analysis. This is a consequence of mutual convertibility 
between spin and orbital angular momentum.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recent experimental developments opened a new avenue to study spin-dependent observables. For example, in relativistic heavy-ion 
collisions, the spin polarization of � hyperons has been measured [1]. The result suggests that a fraction of quark spin (and perhaps 
gluon spin) in the hyperons is aligned along a particular direction, and in turn implies that a quark-gluon plasma (QGP) carries significant 
magnitudes of angular momentum and/or vorticity which cause the spin alignments. On the other hand, dynamics of spin is also a hot 
subject in condensed matter physics, especially in the field of spintronics, where generation of a spin current—a flow of spin angular 
momentum—is one of the key issues (see Ref. [2] for a review).

To describe macroscopic dynamics of spin, it is desirable to generalize hydrodynamics to a spinful fluid. In the field of spintronics, a 
nonrelativistic framework of spin hydrodynamics has been utilized for describing the spin-current generation in the presence of a coupling 
between spin and vorticity in elastic materials [3,4] as well as in liquid metals [5,6]. A similar framework was also used to describe the 
so-called micropolar fluids [7,8]. More recently, “ideal” relativistic hydrodynamics with spin was proposed in the context of the QGP [9]
(See also Refs. [10–12] for recent attempts to apply a Lagrangian description of the spinful relativistic fluid), in which spin is regarded as a 
conserved quantity in the leading-order of a gradient expansion. However, the aforementioned nonrelativistic formulation has shown that 
spin is not conserved even at the leading order.

In this Letter, we elaborate a relativistic framework to resolve the disharmony between the nonrelativistic and relativistic formulations 
and to describe the spin-dependent spacetime evolution of relativistic fluids like the QGP. We employ a phenomenological entropy-current 
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analysis, which was originally used to formulate relativistic viscous hydrodynamics [13], and has been recently applied to, e.g., derivation 
of dissipative corrections in magnetohydrodynamics (MHD) [14–17], and of the chiral magnetic/vortical effect in anomalous hydrodynamics 
[18] and chiral MHD [17]. We shall show that spin density is an inherently dissipative quantity due to mutual conversion between spin 
and orbital angular momentum even in the leading-order spinful relativistic fluid. This is a consequence of the fact that spin itself is 
not a conserved quantity. It is, therefore, crucial to include dissipative terms appearing in the first-order derivative corrections to the 
energy-momentum tensor as we will discuss. In the rest of this Letter, we first discuss the entropy-current analysis. Then, we reinforce 
our observation of the spin dissipation by solving the obtained system of equations with respect to linear perturbations applied to spin 
density and other hydrodynamic variables.

2. Phenomenological derivation of spin hydrodynamics

Phenomenological derivation of hydrodynamics is based on the conservation laws [13]. In the present case, one should consider the 
conservation laws of the total angular momentum Jμαβ as well as the energy-momentum �μν , which are, respectively, expressed as

∂μ�μν = 0 , (1a)

∂μ Jμαβ = 0 . (1b)

The total angular momentum has two contributions from orbital angular momentum and intrinsic spin. Microscopically, they arise as two 
distinct components in the Noether current for the Lorentz symmetry as Jμαβ = (xα�μβ − xβ�μα) +�μαβ , where �μαβ = −�μβα . �μαβ

arises from the invariance with respect to the representation of the Lorentz group acting on a field under consideration, and is naturally 
identified with an internal spin degree of freedom. On the other hand, the orbital angular momentum in the parentheses comes from the 
coordinate transformation of the argument of the field. �μν in this expression is called the canonical energy-momentum tensor, which 
has both symmetric and antisymmetric components: �μν ≡ �

μν
(s) + �

μν
(a) . Note that ∂ν�μν �= 0 in general.

The dynamical variables near local thermal equilibrium are assumed to satisfy the first law of thermodynamics generalized with finite 
spin density Sμν 1:

T s = e + p − ωμν Sμν, T ds = de − ωμνdSμν,

T Ds = De − ωμν D Sμν, (2)

where T , s, e, and p denote the local temperature, entropy density, energy density, and pressure, respectively. In this Letter, we consider a 
neutral fluid in the absence of conserved charges. Here, we introduced a “spin potential” ωμν which is conjugate to the spin density Sμν . 
Note that ωμν has no a priori relation to the fluid velocity uμ at this stage since we introduced the spin density as a new independent 
degree of freedom. We also defined the derivative operator D ≡ uμ∂μ , which corresponds to the Lagrange derivative in fluid mechanics.

One may organize the constitutive relations on the basis of a derivative expansion:

�μν = euμuν + p
μν + �
μν
(1)

, (3a)

�μαβ = uμSαβ + �
μαβ

(1) . (3b)

Here we employ the mostly plus signature of the Minkowski metric ημν ≡ diag(−1, +1, +1, +1). Thus, the normalization of the fluid 
velocity and the transverse projection operator read uμuμ = −1 and 
μν ≡ ημν + uμuν , respectively. Here, the spin density Sμν is 
assumed to satisfy the antisymmetric property Sμν = −Sνμ so that it has the same number of components as the total angular momentum 
has. Accordingly, we have ωμν = −ωνμ . We introduced the first-order derivative correction to the energy-momentum tensor �μν

(1)
and the 

spin current �μαβ

(1) (= −�
μβα
(1) ). As mentioned earlier, the former contains both symmetric and antisymmetric components, whose roles 

will be elaborated below. More discussions about the tensor decomposition in Eq. (3) can be found in Appendix A.
Based on the above relations, we now analyze the entropy conservation/production. In the lowest order in the gradient, we identify 

the entropy current as

sμ
(0)

= suμ . (4)

Therefore, by using the thermodynamic relations (2), we find

∂μ(suμ) = Ds + sθ = β(De − ωαβ D Sαβ) + sθ , (5)

where θ = ∂μuμ . To eliminate the Lagrange derivatives, we use equations of motion for e and Sαβ which are obtained by substituting the 
constitutive equations (3) into the conservation laws (1) and contracting Eq. (1a) with uν :

De = −(e + p)θ + uν∂μ�
μν
(1) , (6a)

D Sαβ = −Sαβθ − 2�
αβ

(1a) − ∂μ�
μαβ

(1) . (6b)

1 Note that the second and third equations have slightly different physical meanings. The differentiation d in the second equation describes a transition between two 
different local equilibrium states, and determines physical properties of the local thermodynamic functions (e.g., the entropy density). On the other hand, the third equation 
defines the spacetime dynamics of the entropy density.
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We use the equations of motion at the lowest-order, that is, Eq. (6a) with �μν
(1)

= 0 and Eq. (6b) with �μαβ

(1)
= 0. One should, however, 

maintain the first-order term �αβ

(1a) in the antisymmetric part of the energy-momentum tensor since this term is one of the lowest-order 
terms in Eq. (6b). Inserting these equations into Eq. (5), the divergence of the entropy current can be evaluated as

∂μsμ(0) = βθ{sT − (e + p − ωαβ Sαβ)} + 2βωαβ�
αβ

(1a) = 2βωαβ�
αβ

(1a) , (7)

where we used Eq. (2) to reach the second line. This expression indicates that the lowest-order hydrodynamic equations of motion (6) do 
not conserve the lowest-order entropy current (4). This is in contrast to the case of a fluid without spin, where the lowest-order equations 
of motion correspond to ideal hydrodynamics and describe reversible fluid dynamics. The entropy production implies that spin density is 
inherently a non-conserved quantity, which dissipates in a finite time scale. Indeed, the conservation law of the total angular momentum 
(1) can be cast into a “non-conservation” law of the spin current

∂μ�μαβ = −2�
αβ

(a) . (8)

The right-hand side comes from the orbital angular momentum, which acts as a source/absorption term for the spin current. This is of 
course a natural relation indicating that spin and orbital angular momentum are converted to each other. The lowest-order entropy cur-
rent is conserved only when �αβ

(a) = 0, i.e., when spin and orbital angular momentum are separately conserved.2 Since the spin current is 
inherently dissipative, there is no counterpart of ideal hydrodynamics that could be called ideal spin hydrodynamics. In other words, spin 
density is not a strict hydrodynamic variable that survives in the long time scale like a conserved charge associated with a symmetry. Nev-
ertheless, when the relaxation time of spin density is longer than the mean-free-time of microscopic scattering processes, hydrodynamic 
description of the transient spin dynamics is expected to work (see also discussions in Ref. [19]). Such a situation should be characterized 
by small values of transport coefficients for spin dissipation, which we will introduce shortly in our formalism. It is, therefore, important 
to investigate the dissipative corrections.

For this purpose, we keep all the first-order terms in the equations of motion (6). The divergence of the entropy current (5) now reads

∂μ(suμ) = βuν∂μ�
μν
(1s) + (βuν∂μ�

μν
(1a) + 2βωμν�

μν
(1a)) + βωαβ∂μ�

μαβ

(1) . (9)

To proceed, we need to elaborate the counting scheme of the derivative expansion. In Eq. (9), we regard the temperature (and the energy 
density) as a zeroth-order quantity. This suggests a natural assignment ωμν = O(∂1) so that the two terms between the brackets fall in 
the same order in the gradient. Here, we employ this counting scheme, and will accordingly drop the last term which is an order higher 
as compared to the others. Then, one can further arrange this expression as

∂μ(suμ + sμ(1)) = −�
μν
(1s)∂μβν − �

μν
(1a)(∂μβν − 2βωμν), (10)

where we defined βμ ≡ βuμ and identified the first-order correction to the entropy current as sμ(1) = −�
μν
(1)βν . The semipositivity of this 

entropy production, as required by the second law of thermodynamics, can be ensured for any hydrodynamic configuration when each 
term on the right-hand side has a semipositive bilinear form [13]. In turn, this constrains possible tensor structures of the first-order 
derivative corrections up to scalar coefficients introduced as transport coefficients.

In passing, we note that one may also employ another counting scheme with ωμν = O(∂0). In this counting, the spin potential ωμν

modifies the constitutive relations even at the zeroth order and provides a preferred orientation specified by ωμ = (1/2)εμνρσ uνωρσ like 
a “strong” magnetic field Bμ = O(∂0) in magnetohydrodynamics [14–17]. This counting scheme suggests an interesting extension of the 
present work.

One may write the most general tensor structure of the first-order corrections as

�
μν
(1s) = 2h(μuν) + τμν , (11a)

�
μν
(1a) = 2q[μuν] + φμν , (11b)

where {hμ, τμν, qμ, φμν} = O(∂1), τμν = τ νμ , φμν = −φνμ , and hμuμ = qμuμ = τμνuν = φμνuν = 0. We use the shorthand notations 
X (μν) ≡ (Xμν + Xνμ)/2, X [μν] ≡ (Xμν − Xνμ)/2, X 〈μν〉 ≡ (Xμν + Xνμ)/2 − Xσ

σ 
μν/3. Then, the second law of thermodynamics with spin 
is guaranteed if we identify the first-order corrections as

hμ = −κ(Duμ + β∂
μ
⊥ T ), (12a)

τμν = −2η∂
〈μ
⊥ uν〉 − ζ θ
μν, (12b)

qμ = −λ
( − Duμ + β∂

μ
⊥ T − 4ωμνuν

)
, (12c)

φμν = −2γ
(
∂

[μ
⊥ uν] − 2


μ
ρ 
ν

λω
ρλ

)
, (12d)

with ∂μ
⊥ ≡ 
μν∂ν and κ, η, ζ, λ, γ ≥ 0. κ , η, and ζ are the well-known heat conductivity, shear and bulk viscous coefficients, respectively. 

λ and γ are new transport coefficients in relativistic spin hydrodynamics. Notice that, in the leading order of Eq. (8), the antisymmetric 
part �αβ

(1a) provides a four-dimensional torque acting on the evolution of the Lorentz generator �0αβ . Therefore, the spacial projection 
φμν = 


μ
α
ν

β�
αβ

(1a) gives rise to an antisymmetric stress which diminishes the intrinsic angular momentum of the fluid cell. On the other 

2 It should be stressed that the tensors in Eq. (8) are in the canonical forms, only in which the tensor �μαβ corresponds to the internal spin degree of freedom. Therefore, 
one cannot conclude separate conservation of the spin component, e.g., with a Belinfante-improved symmetric energy-momentum tensor.
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hand, the temporal projection qμ = uα

μ
β �

αβ

(1a)
boosts the fluid cell. For these reasons, we call γ the rotational viscosity [20] and λ the 

boost heat conductivity. The latter is a relativistic effect and does not have a nonrelativistic counterpart. In global equilibrium, the entropy 
production should cease, so that ∂ [μβν] = 2βωμν from Eq. (10). This implies that the spin potential ωμν is no longer an independent 
variable and is completely determined by the thermal vorticity [21,19].

Using the leading-order equation of motion for uμ , i.e., (e + p)Duμ = −∂
μ
⊥ p +O(∂2), we can eliminate Duμ in hμ and qμ as

hμ = −κ

[
−∂

μ
⊥ p

e + p
+ β∂

μ
⊥ T +O(∂2)

]
= O(∂2), (13a)

qμ = −λ

[
2∂

μ
⊥ p

e + p
− 4ωμνuν

]
+O(∂2). (13b)

The heat current hμ is beyond the first order and can be neglected within the present working accuracy as a consequence of the spacetime 
translational symmetries.3 In addition, we note that qμ cannot be eliminated by a frame choice at O(∂1). In fact, the variation of qμ under 
a redefinition of the fluid velocity uμ → uμ +δuμ with δuμ =O(∂1) reads δqμ = δ(


μ
[αuβ])�αβ

(a) . Since �αβ is assumed to be invariant [23,

24], this variation should be at most a second-order quantity δqμ =O(∂2), and is negligible as compared to qμ in the original frame.

3. Linear mode analysis

Relativistic hydrodynamic equations with spin are obtained by plugging the constitutive relations (12) and (13) into the conservation 
laws (1). Below, we consider linear perturbations on top of global thermal equilibrium, and solve the hydrodynamic equations to discuss 
the dynamic evolution of the (non-)hydrodynamic modes in a spinful relativistic fluid. Namely, we consider perturbations given by

e(x) = e0 + δe(x), p(x) = p0 + δp(x),

vi(x) = 0 + δvi(x), Sμν(x) = 0 + δSμν(x), (14)

ωμν(x) = 0 + δωμν(x),

where vi is the three-velocity of a fluid and uμ = (1, δvi) +O((δv)2). Here, we concentrate on one of the global equilibrium configurations 
where the background fluid velocity and the spin density are vanishing. In general, finite thermal vorticity can survive in global equilibrium 
[21] and so is the spin potential ωμν in another counting scheme mentioned earlier. This situation would serve as another starting point 
of the linear-mode analysis.

Linearizing the hydrodynamic equations with respect to the perturbations (14), we obtain

0 = ∂0δe + ∂iδπ
i − 2(c2

s λ
′∂i∂

iδe + Db∂
iδS0i), (15a)

0 = (∂0δπ
i + c2

s ∂
iδe) − γ‖∂ i∂ jδπ

j − (γ⊥ + γ ′)(δi
j∇2 − ∂ i∂ j)δπ

j + Ds∂ jδS ji, (15b)

0 = ∂0δSij + 2{DsδSij − γ ′(∂ iδπ j − ∂ jδπ i)}, (15c)

0 = ∂0δS0i + 2(c2
s λ

′∂ iδe + DbδS0i), (15d)

where δπ i ≡ δ�0i = (e0 + p0)δvi + λc2
s ∂

iδe + DbδS0i , and summation over repeated (spatial) indices are assumed. We also introduced the 
constants as

c2
s ≡ ∂ p

∂e
, χs ≡ ∂ Sij

∂ωi j
, Ds ≡ 4γ

χs
, γ ′ ≡ γ

e0 + p0
,

χb ≡ ∂ Si0

∂ωi0
, Db ≡ 4λ

χb
, λ′ ≡ 2λ

e0 + p0
, (16)

γ‖ ≡ 1

e0 + p0

(
ζ + 4

3
η

)
, γ⊥ ≡ η

e0 + p0
.

The eigenmodes of the linearized hydrodynamic equations (15a)–(15d) can be obtained straightforwardly. We put the detailed calcula-
tion in Appendix B. The dispersion relations of those modes read

ω = −2iDs, (17a)

ω = −2iDb, (17b)

ω =
{

−2iDs − iγ ′k2
z +O(k4

z ),

−iγ⊥k2
z + O (k4

z ),
(17c)

3 This statement is valid up to an ambiguity in the definition of uμ known as the “frame choice” (see, e.g., Refs. [13,22–25]). However, in the current case for a neutral 
fluid, there are no other natural frame choices motivated by conserved currents.
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ω =
{

±cskz − i
γ‖
2

k2
z +O(k3

z ),

−2iDb − 2ic2
s λ

′k2
z +O(k4

z ).
(17d)

Note that one may take the momentum in the z-direction k = (0, 0, kz) without loss of generality according to the rotational symmetry 
of the system. Here, we expanded the dispersion relations with respect to the wave number kz up to O(k2

z ). There are two duplicates of 
the second and third solutions because of the residual rotational symmetry around k. In total, there are ten modes, which are composed 
of six massive modes and four massless modes—two longitudinal and two transverse hydrodynamic modes. As in usual hydrodynamics, 
the massless modes are the shear mode and the sound mode, which are affected by the viscous corrections. The gaps in the former six 
modes arise as a consequence of the non-conservative nature of the six spin degrees of freedom Sμν . Therefore, we conclude that even if 
finite spin density is presented in a relativistic fluid, it will be damped out after characteristic time scales τs ≡ 1/Ds and τb ≡ 1/Db .4

When τs and τb take large enough values compared with the typical microscopic time scale in a problem, spin hydrodynamics may 
work with the spin density being a quasi-conserved quantity. This means that such slow dynamics is captured by our new transport 
coefficients, the rotational viscosity γ and boost heat conductivity λ [cf., Eq. (16)]. We again emphasize that there is no symmetry which 
guarantees separate conservation of the spin component out of the total angular momentum. The absence of a symmetry is the reason 
why there is no rigorous notion of “ideal spin hydrodynamics” no matter how large the spin lifetime is, and why possible presence 
of a slow spin variable depends on details of a system via the transport coefficients. Namely, the slowness of spin dissipation requires 
specific reasons why spin rotation in each microscopic collision process is suppressed. One possible reason would be suppression of spin 
interactions by the mass of constituent particles.

4. Summary and outlook

We have derived the relativistic hydrodynamic equations with a dynamical spin degree of freedom on the basis of the phenomeno-
logical entropy-current analysis. The resulting constitutive relations acquire the spin current and the antisymmetric part of the energy-
momentum tensor as well as the usual symmetric part. We identified two new important transport coefficients in the antisymmetric part 
of the energy-momentum tensor that control the relaxation time of spin density.

We have also solved the derived spin hydrodynamic equations within the linear-mode analysis, and found four massless hydrodynamic 
modes—two longitudinal propagating modes and two transverse diffusive modes—and six non-hydrodynamic modes corresponding to the 
six non-conserved degrees of freedom in the spin density Sμν .

There are several interesting directions which we can pursue in future: (1) We can extend the present linear-mode analysis to the case 
with a finite thermal vorticity. Since such a background configuration breaks, e.g., the parity symmetry, there may appear mode mixing 
between (non-)hydrodynamic modes. Similarly, introducing an external or dynamical magnetic field may also lead to mode mixing or 
the appearance of new modes; (2) The dissipative spin hydrodynamic equations should be derived from underlying microscopic theories, 
allowing for a comparison with the result presented in this Letter. Established frameworks include the low-energy effective theory from 
the local Gibbs distribution [26–28], the kinetic theory based on the Wigner function formalism [29,30], and the multi-moment formalism 
within the Boltzmann transport theory [31] (see references therein).

Finally, we note that the spin hydrodynamic equations can be applied, for example, to describe the QGP created in relativistic heavy-ion 
collisions and to the spintronics of emergent relativistic quasiparticles in condensed matter physics. For these applications, it is important 
to establish Kubo formulas and quantify the new transport coefficients from underlying microscopic theories, and to extend the present 
framework to the second order to form a causal and numerically stable system of equations. We leave these directions as future works.
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Appendix A. General tensor decomposition

We here discuss the tensor decomposition in Eq. (3). Making a projection with respect to uμ , we can always write

�μν = euμuν + p
μν + �̃μν , (A.1a)

�μαβ = uμSαβ + �̃μαβ , (A.1b)

sμ = suμ + s̃μ , (A.1c)

in such a way that �̃μνuμuν = �̃μαβuμ = s̃μuμ = 0. Then, the corresponding divergence of the entropy current reads

4 Note that τs and τb are different from each other due to the absence of the Lorentz symmetry.
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∂μsμ = βν∂μ�̃μν + 2βωμν�̃μν + βωαβ∂μ�̃μαβ + ∂μ s̃μ. (A.2)

Choosing s̃μ = −βν�̃μν − βωαβ�̃μαβ , we obtain

∂μsμ = −∂μβν�̃μν + 2βωμν�̃μν − ∂μ(βωαβ)�̃μαβ. (A.3)

Our power counting scheme assigns ωμν =O(∂1). Therefore, to ensure semipositive entropy production, the transverse components must 
be at most �̃μν ∼O(∂1) and �̃μαβ ∼O(∂2), respectively. This shows that the tensor decomposition (3) does not lose generality at O(∂1)

within our power counting scheme, and especially means that there are no other zeroth-order terms which are consistent with the second 
law of thermodynamics.

Another issue regarding the tensor decomposition (3) is that the canonical spin current �μαβ may be subject to further constraints 
other than the common property �μαβ = −�μβα . For example, if constituent particles are Dirac fermions, one may choose �μαβ to 
be completely antisymmetric in all its three indices. Nevertheless, one has the freedom to render the definition of �μαβ by using the 
Belinfante transformation of the energy-momentum tensor.5 Namely, by using an antisymmetric tensor Gλμν = −Gμλν , we can define 
new conserved energy-momentum and total angular momentum tensors by

�′μν ≡ �μν + ∂λGλμν , (A.4a)

J ′μαβ ≡ (xα�′μβ − xβ�′μα) + �′μαβ , (A.4b)

where the spin current reads

�′μαβ ≡ �μαβ − 2Gμ[αβ] . (A.5)

Unless Gλμν is a completely antisymmetric tensor, the new spin current �′μαβ is not completely antisymmetric but is antisymmetic only 
in the last two indices. Then, one can apply the decomposition (3) to �′μν and �′μαβ and perform the entropy-current analysis as in the 
main text. The choice of Gλμν is not unique since the above transformation reduces the constraints on the structure of Lorentz indices 
in the spin current. However, the inverse transformation, which brings �′μαβ back to a completely antisymmetric spin current �μαβ , 
requires a specific choice Gλμν = �′νλμ .

Appendix B. Dispersion relations of linear modes

We here summarize the linearized equations of motion (15) in a matrix form Mδc = 0. The Fourier components of the fluctuations are 
put in a vector form δc ≡ (δẽ, δπ̃ z, δ S̃0z, δπ̃ x, δ S̃ zx, δπ̃ y, δ S̃ yz, δ S̃0x, δ S̃0y, δ S̃xy)t . The matrix M is given by a block-diagonal form

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A3×3 O
−iω + (γ⊥ + γ ′)k2

z +iDskz 0 0 0 0 0
−2iγ ′kz −iω + 2Ds 0 0 0 0 0

0 0 −iω + (γ⊥ + γ ′)k2
z −iDskz 0 0 0

O 0 0 2iγ ′kz −iω + 2Ds 0 0 0
0 0 0 0 −iω + 2Db 0 0
0 0 0 0 0 −iω + 2Db 0
0 0 0 0 0 0 −iω + 2Ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the upper left block is given by

A3×3 =
⎛
⎝ −iω + 2c2

s λ
′k2

z ikz −2iDbkz

ic2
s kz −iω + γ‖k2

z 0
2ic2

s λ
′kz 0 −iω + 2Db

⎞
⎠ . (B.1)

As noted in the main text, we took the momentum in the z-direction without loosing generality.
Thanks to the block-diagonal form of M , the full secular equation from the condition, det M = 0, is immediately found to be

(−iω + 2Ds)(−iω + 2Db)
2
∣∣∣∣ −iω + (γ⊥ + γ ′)k2

z +iDskz

−2iγ ′kz −iω + 2Ds

∣∣∣∣
2
∣∣∣∣∣∣
−iω + 2c2

s λ
′k2

z ikz −2iDbkz

ic2
s kz −iω + γ‖k2

z 0
2ic2

s λ
′kz 0 −iω + 2Db

∣∣∣∣∣∣ = 0 . (B.2)

The solutions of this equation provides the dispersion relations shown in Eq. (17). The origins of the first two factors are tracked back to 
the fluctuations δ S̃xy and δ S̃0x,0y , respectively. The third factor is from the mixing between a transverse spin and fluid velocity δπ̃ x and 
δ S̃ zx (δπ̃ y and δ S̃ zy). The degeneracies in the dispersion relations occur as a consequence of the residual rotational symmetry around the 
momentum k. The last factor is from the mixing among the energy density δẽ and the longitudinal components δπ̃ z and δ S̃xy .

5 We refer the readers to Refs. [32–34] for more information about the meaning of the Belinfante transformation and the tensor structure of spin current.
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